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Abstract

Multimodal neuroimaging is an emerging field that leverages multiple sources of infor-

mation to diagnose specific brain disorders, especially when deep learning-based AI

algorithms are applied. The successful combination of different brain imaging modali-

ties using deep learning remains a challenging yet crucial research topic. The integra-

tion of structural and functional modalities is particularly important for the diagnosis of

various brain disorders, where structural information plays a crucial role in diseases

such as Alzheimer's, while functional imaging is more critical for disorders such as

schizophrenia. However, the combination of functional and structural imaging modali-

ties can provide a more comprehensive diagnosis. In this work, we present MultiViT, a

novel diagnostic deep learning model that utilizes vision transformers and cross-

attention mechanisms to effectively fuse information from 3D gray matter maps

derived from structural MRI with functional network connectivity matrices obtained

from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, out-

performing both our unimodal and multimodal baselines, enabling more accurate classi-

fication and diagnosis of schizophrenia. In addition, using vision transformer's unique

attentional maps in combination with cross-attentional mechanisms and brain function

information, we identify critical brain regions in 3D gray matter space associated with

the characteristics of schizophrenia. Our research not only significantly improves the

accuracy of AI-based automated imaging diagnostics for schizophrenia, but also pio-

neers a rational and advanced data fusion approach by replacing complex, high-

dimensional fMRI information with functional network connectivity, integrating it with

representative structural data from 3D gray matter images, and further providing inter-

pretative biomarker localization in a 3D structural space.
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1 | INTRODUCTION

Deep learning has emerged as a rapidly evolving field in recent years,

significantly contributing to addressing various challenges in computer

vision and image processing tasks. The success of convolutional neural

networks (CNNs) and their numerous adaptations have resulted in the

widespread adoption of deep learning techniques in neuroimaging

research (Abrol et al., 2021). Numerous studies have employed 3D
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CNN models to predict intricate brain disorders such as schizophrenia

(SZ), with the majority of these studies concentrating on unimodal

data (Lin et al., 2022; Oh et al., 2019; Qureshi et al., 2019). The vision

transformer (ViT), an adaptation of the transformer model originally

developed for natural language processing (Vaswani et al., 2017), has

recently emerged as a prominent model in computer vision

(Dosovitskiy et al., 2020). Demonstrating potential to outperform tra-

ditional CNN models, ViTs are increasingly utilized in various tasks

such as image classification (Bazi et al., 2021), image segmentation

(Strudel et al., n.d.), and object detection (Beal et al., 2020). ViT can

effectively substitute CNN-based models due to its superior perfor-

mance on large-scale image datasets like ImageNet. The self-attention

(SA) mechanism in ViTs results in larger receptive fields and better

encoding of spatial relationships among different features, offering a

structural advantage over conventional CNN models (Han et al., 2022;

Zhao et al., 2020). In the field of medical imaging, researchers are

increasingly exploring hybrid CNN-transformer models (Li et al., 2022;

Zhou et al., 2023) due to the scarcity of datasets resulting from pri-

vacy concerns. Some researchers are developing more advanced deep

learning models based on multimodal image fusion to address the limi-

tations of single modality information and data volume.

Schizophrenia is a highly complex brain disorder characterized by

a range of symptoms, including delusions, hallucinations, disorganized

thinking, and significant social or occupational dysfunction. Neuroim-

aging data can illuminate the brain's complex regions and pathways

linked with mental disorders such as SZ (Du et al., 2012; Sui

et al., 2015). Some studies suggest that SZ is primarily a disorder of

functional brain connectivity, and that these irregularities in how brain

regions communicate may underlie many of the disorder's characteris-

tic symptoms (Yu et al., 2012; Zhao et al., 2018). For example, func-

tional MRI (fMRI) has been identified as a valuable diagnostic tool,

with numerous studies utilizing AI-assisted diagnostics through fMRI

to enhance the detection and understanding of SZ (Ghanbari

et al., 2023; Qureshi et al., 2019). In addition, other research suggests

that structural changes in the brain, particularly in gray matter volume

(GMV) from structural MRI(sMRI), are associated with functional

impairments and symptoms observed in SZ (Gupta et al., 2015; Gur

et al., 1999; Hulshoff Pol et al., 2002). GMV changes are significant

because gray matter includes neuronal cell bodies and synapses,

which are critical for processing information in the brain; alterations in

these areas can drastically affect cognitive and emotional functions.

Thus, assessing GMV can provide essential insights into the neurologi-

cal underpinnings of SZ. The integration of both structural and func-

tional information, particularly through various medical imaging

modalities, is critical to the effective diagnosis of SZ.

In this study, we introduce MultiViT, a multimodal interpretable

deep learning model that integrates structural and functional neuroim-

aging data for AI-assisted diagnosis of SZ. (1) The MultiViT model

merges 3D GMV data with lightweight two-dimensional FNC matrices

derived from ICA-processed fMRI data, effectively combining struc-

tural and functional information to significantly improve diagnostic

accuracy. (2) The model employs cross-attention (CA) mechanisms to

fuse features processed by ViT encoders from both GMV and FNC

data, which has led to a significant increase in model performance,

achieving an AUC of 0.833. In addition, MultiViT outperformed a num-

ber of single-modality and multimodality baselines composed of dif-

ferent deep learning backbones, benefiting in particular from the

computational efficiency of using FNC as a lightweight two-

dimensional matrix compared to higher-dimensional fMRI data. (3) In

addition, we use attention rollout techniques in MultiViT to extract

weights from different attentional layers and generate anatomical

brain saliency maps based on 3D structural space. These attention

maps identify brain regions that serve as biomarkers for SZ. By inte-

grating weights from cross-attentional layers, the model also pinpoints

functional biomarkers, enabling a comprehensive analysis that corre-

lates functional patterns with structural changes.

2 | RELATED WORKS

Previous neuroimaging research using deep learning architectures,

especially ViT, has predominantly focused on unimodal applications.

For example, Singla et al. (2022) developed a 3D ViT model for gender

prediction using structural MRI data, achieving an AUC of over 0.9 on

the ABCD dataset. Nevertheless, the advantages of multimodal

approaches over unimodal methods in neuroimaging are increasingly

being recognized. For example, Zhou et al. (2023) used a CNN-

transformer mixture to classify brain images across multiple datasets,

demonstrating significant effectiveness on Alzheimer's disease data-

sets. Venugopalan et al. (2021) presented a comprehensive framework

that combines MRI, EHR, and SNP data to improve Alzheimer's dis-

ease prediction, outperforming single-modality models.

As the field of multimodal research grows, the application of ViT

and other deep learning models for multimodal studies in neuroimag-

ing is gradually increasing. Odusami, Maskeli�unas, and Damaševičius

(2023) proposes a multimodal fusion approach using discrete wavelet

transform optimized with transfer learning to effectively combine MRI

and PET data for early detection of Alzheimer's disease. The architec-

ture fuses structural and functional information at the “pixel level”
and improves diagnostic accuracy by integrating data at the individual

pixel level in the images. Xing et al. (2022) presents a novel model

using ViT applied to 2D fusion images derived from 3D PET scans,

demonstrating superior accuracy and AUC values compared to tradi-

tional 3D/2D CNN methods when evaluated with ADNI data. Kadri

et al. (2023) presents two novel methods for Alzheimer's disease diag-

nosis using advanced neural architectures that combine elements of

CNNs and transformers, demonstrating high classification accuracies

on the OASIS dataset. However, the effective design of data fusion

modules within deep learning models remains a significant challenge

worthy of further exploration in medical imaging. Tang et al. (2022)

proposes a multimodal medical image fusion method called MATR,

which enhances the global semantic extraction capability through

adaptive convolution and adaptive transform to solve the limitations

of retaining global context information. However, recent data fusion

methods and multimodal deep learning architectures in the medical

image field require extensive experiments and training to achieve
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optimal fusion results, which can be time-consuming and resource-

intensive.

In addition, researchers are exploring data fusion methods in

medical imaging while investigating how to create interpretable deep

learning models. Odusami, Maskeli�unas, Damaševičius, and Misra

(2023) proposes a methodology for early diagnosis of Alzheimer's dis-

ease by combining PET and MRI images through a three-channel

phase feature learning model for early fusion that simultaneously inte-

grates and concatenates neuroimaging data from both modalities; the

novelty of the model lies in achieving high specificity and providing

interpretability through an explainable artificial intelligence (XAI)

model, making the results transparent and understandable. El-Sappagh

et al. (2021) uses explainable AI by providing global and instance-

based explanations of the random forest classifier using the SHapley

Additive exPlanations (SHAP) feature attribution framework and

implementing various explainers based on decision trees and fuzzy

rule-based systems to help physicians understand the predictions.

3 | METHODS

Our methodology comprises the following stages: Initially, we conduct

pre-processing on the input data (sMRI and fMRI) utilizing established

pipelines. This involves generating 3D gray matter images from sMRI

using the unified segmentation model in the SPM toolbox and com-

puting fMRI features employing the NeuroMark pipeline (Du

et al., 2020), a fully automated spatially constrained independent com-

ponent analysis. Subsequently, we construct a 2D static FNC matrix.

Secondly, we concurrently analyze the structural and functional MRI

modalities employing a multimodal deep learning framework that

encodes the data through specialized architectures. We evaluated a

range of multimodal pipelines, exploring combinations of different

architectures like 3DCNN, 3DViT, 2DCNN, and MLP. Among these,

the MultiViT model emerged as a benchmark, outperforming other

deep learning and machine learning variants. Finally, we developed an

interpretable architecture capable of generating attention maps from

ViT encoders for 3D structural MRI and 2D FNC data. These maps

can be utilized to identify potential brain areas and functional parts by

multimodal MRI data concerning SZ. Figure 1 delineates the general

outline of our research.

3.1 | Data and pre-processing

In this study, we employed two datasets related to clinical research on

SZ, Table 1 shows the subjects' information datasets. The first dataset

was compiled from three distinct studies, namely fBIRN (Functional

Imaging Biomedical Informatics Research Network) with seven sites,

MPRC (Maryland Psychiatric Research Center) with three sites, and

COBRE (Center for Biomedical Research Excellence) with one site.

This resulted in a total of 827 participants, including 477 control indi-

viduals (mean age: 38.76 ± 13.39, 213 females, 264 males) and

350 SZ individuals (mean age: 38.70 ± 13.14, 96 females, 254 males).

The fBIRN data was collected using the same parameters for resting-

state fMRI (rsfMRI) at all sites, employing a standard gradient echo-

planar imaging (EPI) sequence with a repetition time (TR) and echo

time (TE) of 2000/30 ms, a voxel spacing size of

3.4375 � 3.4375 � 4 mm, and a field of view (FOV) of 220 -

� 220 mm. The data was collected using six Siemens Tim Trio 3-Tesla

scanners and one General Electric Discovery MR750 3.0 Tesla

F IGURE 1 The refined pipeline is as follows: (a) A data pre-processing module is employed for sMRI segmentation and fMRI pre-processing.

This utilizes the NeuroMark pipeline (Du et al., 2020), to convert the data into FNC and time courses. (b) Several deep learning models have been
proposed to handle multimodal data. This includes methods that concatenate 3D and 2D CNN models, serving as our baselines. Notably, our
novel model, MultiViT, demonstrates superior performance compared to traditional concatenation approaches using pure CNNs. (c) Various data
fusion methodologies were evaluated, encompassing concatenation, weighted MLP, and cross-attention. Within the scope of MultiViT, the cross-
attention mechanism was selected, given its advantageous impact on model interpretability. (d) Subsequently, 3D and 2D attention maps were
formulated by leveraging the weights from the ViT attention layer on both MRIs and FNCs. CNN, convolutional neural network; MLP, multi-layer
perceptron.
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scanner. For the COBRE data, rsfMRI images were collected using a

standard EPI sequence with a TR/TE of 2000/29 ms and a voxel spac-

ing size of 3.75 � 3.75 � 4.5 mm a FOV of 240 � 240 mm, using a

3-Tesla Siemens Tim Trio scanner. The MPRC data was collected

using three different 3-Tesla Siemens scanners, including the Siemens

Allegra, Trio, and Tim Trio (Meng et al., 2022).

The second dataset consisted of 815 participants, collected from

seven Chinese hospitals, including Peking University Sixth Hospital,

Beijing Huilongguan Hospital, Xinxiang Hospital Simens, Xinxiang

Hospital GE, Xijing Hospital, Renmin Hospital of Wuhan University,

and Zhumadian Psychiatric (Yan et al., 2019) Hospital. The partici-

pants included 326 control individuals (mean age: 29.81 ± 8.68,

167 females, 159 males) and 489 SZ individuals (mean age: 28.98

± 7.63, 229 females, 260 males), all of whom were Han Chinese. The

resting-state fMRI data were collected using three different 3-Tesla

scanners across the seven sites, including the Siemens Tim Trio, Sie-

mens Verio, and Signa HDx GE Scanner. The participants were

instructed to lie still and relax while remaining awake and calm.

The preprocessing of fMRI included slice timing correction,

realignment, normalization to the EPI template, and finally smoothing

with a 6 mm kernel. Details of preprocessing steps can be found in

our previous studies (Du et al., 2020). Moreover, the sFNC data was

calculated using cross-correlation among fMRI time series obtained

through independent component analysis (ICA), employing a fully

automated spatially constrained ICA algorithm and the neuro-

mark_fMRI_1.0 template as spatial priors. The sMRI data were prepro-

cessed using a voxel-based morphometry pipeline and modulated by

the Jacobian of the spatial transform to produce voxelwise GMV data.

3.2 | Transformer

The transformer model, introduced by Vaswani et al. (2017), has had a

profound impact on the field of NLP and, more broadly, deep learning.

This innovative architecture overcomes the limitations of traditional

RNNs and CNNs in capturing long-range dependencies and paralleli-

zation. Central to the transformer model is the concept of SA mecha-

nisms, which enable the model to weigh the importance of each token

in a sequence while considering the relationships between tokens at

various positions. This novel approach has led to significant advance-

ments in tasks such as machine translation, text summarization, and

question-answering. Moreover, the transformer model has served as

the foundation for the development of numerous state-of-the-art

pre-trained models, such as BERT, GPT, and T5, which have estab-

lished new performance benchmarks across a wide range of NLP

tasks. Consequently, the transformer model has become an indispens-

able building block in the realm of deep learning, inspiring new

research directions and applications beyond natural language

processing.

The ViT represents a notable extension of the transformer model

from natural language processing to the domain of computer vision.

Introduced by Dosovitskiy et al. (2020), ViT adapts the SA mechanisms

of the transformer to process image data by dividing input images into

non-overlapping patches and linearly embedding them into a sequence

of tokens. As a result, ViT is capable of capturing intricate spatial rela-

tionships and long-range dependencies within images. This ground-

breaking approach has demonstrated exceptional performance on

various computer vision tasks, including image classification, object

detection, and segmentation, frequently outperforming traditional

CNNs. The success of ViT is largely attributable to its ability to utilize

large-scale image datasets for pre-training, which allows the model to

learn more expressive and transferable visual representations. Conse-

quently, the ViT has emerged as a potent and versatile instrument in

the field of computer vision, spurring novel research avenues and the

development of hybrid models that combine the strengths of trans-

formers and CNNs to address a wide range of visual tasks.

3.3 | Self-attention and cross-attention

The pioneering application of the SA mechanism (Sukhbaatar

et al., 2019) was in the NLP domain, where it was utilized to deter-

mine the level of emphasis of each word in an input sequence. Subse-

quently, the ViT models have expanded the use of SA to image

embeddings. Given an input image embedding X�ℛdseq�dmodel , three

trainable weight matrices WQ �ℛdmodel�dq ,WK �ℛdmodel�dk , and

WV �ℛdmodel�dv are utilized to project X into query matrix Q�ℛdseq�dq ,

key matrix K�ℛdseq�dk , and value matrix V�ℛdseq�dv .

Q¼XWQ

K¼XWK

V¼XWV

ð1Þ

Then, we have the SA function that calculates the score matrix:

SA Q,K,Vð Þ¼ softmax
QKTffiffiffiffiffi
dk

p
 !

V ð2Þ

where dq ¼ dk , which is the dimension of the query and key matrix. In

the ViT models, multi-head self-attention (MHSA) separates the

TABLE 1 Dataset details.

Dataset Age Gender (female/male) Race

Dataset1 TC: 38.76 ± 13.39

SZ: 38.70 ± 13.14

TC: 213/264 (44%)

SZ: 96/254 (27%)

No record (from US hospitals)

Dataset2 TC: 29.81 ± 8.68

SZ: 28.98 ± 7.63

TC: 167/159 (51%)

SZ: 229/260 (45%)

Chinese ethnic Han (from Chinese hospitals)
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original input embeddings into multiple heads, then computes the

concatenation from each head's self-attention result. This can be

represented as:

headi ¼Attention QWQ
i ,KW

K
i ,VW

V
i

� �
MHSA Q,K,Vð Þ¼Concat head1,…,headið ÞWO

ð3Þ

where WQ
i ,W

K
i , and WV

i are trainable weight matrices that project

the original query, key, and value, respectively, into linearly pro-

jected versions in each headi. The trainable weight matrix WO per-

forms a linear projection to the final result after the concatenation of

each headi.

Cross-attention (CA) serves as a cornerstone in transformer-

based deep learning models, allowing for seamless integration of dis-

parate input sources. First introduced by Vaswani et al. (2017), CA

empowers a transformer to focus on and assign significance to tokens

or features from varying inputs, all the while discerning their inter-

relationships. This flexibility enables the model to adeptly merge and

analyze mixed data types, from text and audio to images (Wei

et al., 2020), as well as data like structural and functional brain images.

The strength of CA lies in its ability to foster optimal inter-modality

information sharing (Lee et al., 2018), which culminates in a holistic

data interpretation and enhanced predictive prowess. Owing to its

effectiveness, CA has become indispensable in crafting top-tier

models across fields such as NLP, computer vision, and biomedical

studies (Gheini et al., 2021).

Given image embeddings, X and Y, the concept of cross-attention

can be likened to self-attention. From embedding X, we derive queries

QX and keys KX , while values VY are derived from embedding Y. The

equation can be written as:

CA QX ,KX ,VYð Þ¼ Softmax
QXK

>
Xffiffiffiffiffi

dk
p

� �
VY ð4Þ

In models like ViTs, multihead cross-attention (MHCA) frequently

features in the design blueprint. Elaborating further, for each head i,

we have learned weight matrices WX
Qi, W

X
Ki, and WY

Vi. With these, for

every head i, we calculate:

QXi ¼XWX
Qi

KXi ¼XWX
Ki

VYi ¼YWY
Vi

ð5Þ

Subsequently, attention is determined for each individual head as:

CAi QXi,KXi,VYið Þ¼ Softmax
QXiK

>
Xiffiffiffiffiffi

dk
p

� �
VYi ð6Þ

Finally, amalgamate the outputs from all heads and apply a trans-

formation using an additional learned weight matrix:

MHCA QX ,KX ,VYð Þ¼ CA1,CA2,…,CAh½ �WO ð7Þ

Here, h represents the total number of heads. WO is an output

weight matrix, dimensioned as h�dv ,doutð Þ. In this, dv corresponds to

the value vector's dimension, while dout signifies the anticipated out-

put dimension.

3.4 | MultiViT

3.4.1 | 3D ViT pipeline

We describe the 3D ViT model structure of MultiViT, which processes

the 3D sMRI input. The input is a 3D sMRI structure with the shape:

batch size � 1 � 128 � 128 � 128. This input is segmented into a

series of 3D patches with the shape: 1 � 16 � 16 � 16. Each patch is

then transformed via linear embedding and position embedding,

resulting in an embedding with the shape: B � n � d, where B is the

batch size, n is the number of patches, and d is the embedding dimen-

sion. After passing through M ViT encoder layers, each incorporating

a MHSA mechanism, we obtain a feature representation with the

shape: B � n � d, which will be used in the cross-attention layer.

3.4.2 | 2D ViT pipeline

We describe the other input branch of MultiViT, which processes the

2D FNC data. The input is a 2D FNC structure with the shape: batch

size � 1 � 54 � 54 (after padding). This input is segmented into a

series of 2D patches with the shape: 1 � 27 � 27. Each patch is then

transformed via linear embedding and position embedding, resulting

in an embedding with the shape: B � m � d, where B is the batch size,

m is the number of patches, and d is the embedding dimension. After

passing through N ViT encoder layers, each incorporating a MHSA

mechanism, we obtain a feature representation with the shape:

B � m � d, which will be used in the cross-attention layer.

3.4.3 | Data fusion

We describe the cross-attention operation that integrates the fea-

tures obtained from the previous two subsections. The query matrix

Q is derived from the 3D sMRI features, while the key and value

matrices K and V come from the 2D FNC features. The cross-

attention layer can have multiple heads and multiple layers. The final

fused feature representation has the shape: B� nþmð Þ�d. These

steps culminate in the final composite representation, which is then

passed through an MLP to derive the prediction score. Table 2 and

Figure 2 summarize and show the architecture of our MultiViT model.

3.5 | Attention map

Our MultiViT model's interpretability is based on using ViT models to

obtain attention maps, identifying significant regions and structures
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within the input sMRI and FNC data. Traditional CNN models can

generate saliency maps from input data through gradients, but CNNs

focus primarily on local features. This local emphasis often overlooks

long-range dependencies and contextual information essential for a

comprehensive understanding of brain patterns.

ViT-based attention maps offer several advantages over tradi-

tional gradient-based saliency maps from CNN models. The self-

attention mechanisms in ViTs process images holistically, considering

the interaction between all components within the image. This global

perspective incorporates additional contextual information during the

prediction phase, which can enhance precision. Unlike CNNs, which

primarily focus on local characteristics, ViTs can capture long-distance

correlations between different image regions. These long-range

dependencies may contain crucial information that traditional models

might miss. Furthermore, the interpretability of ViT attention maps

surpasses that of CNN saliency maps. By highlighting the regions

where the model focuses during prediction, these maps provide

insightful perspectives on the structural intricacies of brain function

and regions associated with SZ.

Specifically, for 3D sMRI data, our attention maps are realized by

mapping attention weights back to the original 3D space. This process

results in a 3D weight map that reflects the significance of different

brain regions in relation to SZ. We integrate FNC data by extracting

attention weights from the CA layers, and the resulting 3D weight

map combined with functional information illustrates the correlation

between brain structure and SZ after data fusion. This approach pro-

vides a precise and comprehensive representation of attention distri-

bution throughout the brain's structure and function. In detail, the

attention map A in a ViT model is derived from the attention weights

W in the self-attention layers. For an input image X with patches

F IGURE 2 MultiViT: A schematic representation of a multimodal ViT architecture processing MRI data. The process starts by extracting 3D
and 2D patches from MRI and FNC data. These patches undergo linear embedding transformations to produce tokens. Subsequently, the tokens
are fed into multiple ViT encoders. Within these encoders, the data flows through normalization, MHSA, and MLP blocks. Finally, the combined
data is processed by a MHCA module, which classifies the data into two categories: SZ/HC, for schizophrenia and healthy controls, respectively.
MHCA, multi-head cross-attention; MHSA, multi-head self-attention; MLP, multi-layer perceptron.

TABLE 2 Summary of MultiViT model pipeline.

Shape transformation

3D ViT pipeline

Input (B, 1, 128, 128, 128)

3D patches (B, n, 16 � 16 � 16)

Linear embedding + position embedding (B, n, d)

ViT Encoder (B, n, d)

2D ViT pipeline

Input (B, 1, 54, 54)

2D patches (B, m, 27 � 27)

Linear embedding + position embedding (B, m, d)

ViT Encoder (B, m, d)

Cross-attention

Query (3D sMRI features) (B, n, d)

Key, Value (2D FNC features) (B, m, d)

Cross-attention output (B, n + m, d)

Data fusion

Concatenation (B, n + m, d)

MLP Prediction score

Abbreviations: CNN, convolutional neural network; MLP, multi-layer

perceptron.
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X1,X2,…,Xn. The final attention map A is then obtained by averaging

the attention weights across all heads h and layers l:

A¼1
L

XL
l¼1

1
H

XH
h¼1

W l,hð Þ ð8Þ

For 3D sMRI data, these attention weights are mapped back to

the original 3D space. If X represents the entire 3D MRI, the attention

weights W are mapped based on the token positions within this 3D

space, resulting in a 3D weight map A3D:

A3D x,y,zð Þ¼
Xn
i¼1

Wi �δ x�xi ,y�yi,z� zið Þ ð9Þ

where δ is the Dirac delta function, ensuring the weights are applied

to the correct spatial locations xi ,yi,zið Þ.
When integrating 2D FNC data, the attention weights from the

CA layers need to be mapped into the 3D space. These CA layers pro-

vide attention weights WCA, which are directly mapped to the 3D MRI

space, considering the corresponding spatial coordinates. This results

in a 3D weight map from the CA layer attention weights:

ACA_3D x,y,zð Þ¼
Xn
i¼1

WCA,i �δ x�xi,y�yi,z� zið Þ ð10Þ

The combined attention map Acomb is then derived by integrating

the 3D sMRI attention map and the 3D-mapped CA attention map.

This integration can be done by averaging or weighted summation,

taking into account the contributions from both structural and func-

tional data:

Acomb x,y,zð Þ¼αA3D x,y,zð ÞþβACA_3D x,y,zð Þ ð11Þ

where α and β are weighting factors balancing the contributions from

structural MRI and functional connectivity data, respectively. This

combined 3D weight map provides a good representation of the brain

regions associated with SZ, integrating both structural and functional

insights.

4 | EXPERIMENT

4.1 | Experimental setup

4.1.1 | Datasets

In our research, we utilized data from multi-site studies on SZ, includ-

ing individuals scanned with a 3 T MRI scanner (N = 2130). The sMRI

data is three-dimensional with dimensions of 121,145,121ð Þ, and the

sFNC data, calculated from 53 regions of interest from fMRI, is two-

dimensional with dimensions of 53,53ð Þ. Using Torchio, we resized

the sMRI and sFNC data to 120,140,120ð Þ and 54,54ð Þ to fit our

model due to the ViT's input characteristics. This open-source Python

library efficiently loads, preprocesses, and augments 3D medical imag-

ing data. Additionally, we augmented our data using various strategies

such as RandomCrop, RandomAffine, RandomFlip, and Add Guassian-

Noise, provided by Torchio.

4.1.2 | Models design

To demonstrate the effectiveness of our MultiViT model, we designed

and evaluated a series of unimodal and multimodal models. Our

experimental design can be divided into three main phases. During

the first stage, we focused on unimodal models, which served as our

baseline. Since SZ detection can utilize either sMRI data or FNC infor-

mation, we developed different unimodal models for each type of

data. These unimodal representations provided us with essential base-

line performance metrics against which we could compare more com-

plex models. In the second phase, we moved to multimodal

configurations, combining sMRI and FNC pathways to better capture

the multifaceted nature of brain imaging data. We explored basic mul-

timodal models such as the 3D CNN-CNN and 3DViT-ViT, which use

simple concatenation and weighted MLP techniques for data fusion.

These models allowed us to assess the benefits and limitations of sim-

ple multimodal integration and provided a benchmark for more

sophisticated fusion methods.

The final and most innovative phase of our design involved

the MultiViT model. This model uses a ViT-based architecture that

seamlessly integrates both sMRI and FNC data. Specifically, the

3DViT component captures the rich spatial information inherent in

sMRI data, while the 2DViT processes FNC data similarly to tradi-

tional ViTs. After feature extraction by their respective ViT

encoders, the trajectories are fused using a cross-attention mecha-

nism. This approach enhances the mutual information synergy

between the two types of brain imaging data, providing a more

sophisticated and effective integration compared to simple concate-

nation methods.

4.1.3 | Training and evaluation

All pipelines, including the baseline models and MultiViT, were trained

to utilize advanced techniques such as AdamW optimization, StepLR

scheduler, and a 30-epoch warmup. An 8:1:1 split was employed to

select the training, validation, and testing sets. A 10-fold cross-

validation approach was employed for each model to ensure accurate

results. The initial hyperparameters for MultiViT training were set to a

learning rate of 3�104 and a weight decay of 1�103, totaling

200 epochs. The models were evaluated using general accuracy, bal-

anced accuracy, AUC, F1 score, and precision. The number of parame-

ters for each model is also reported to summarize their complexity.

Our experiments used the PyTorch deep learning framework and NVI-

DIA RTX v100 GPUs.
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4.2 | Results

4.2.1 | Model performance

In this section, we summarize the model performance based on valida-

tion and testing metrics for baselines and MultiViT. Table 3 presents

our models' performance, comprising unimodal baselines, multimodal

baselines, and MultiViT. The results indicate that MultiViT consider-

ably surpasses other baseline models in terms of balanced accuracy,

AUC, and F1 score. Furthermore, while ViT-based models, including

MultiViT, have higher computational costs than CNNs, they offer

superior accuracy and overall performance. This trade-off highlights

the robustness and efficacy of the ViT-based approach despite its

computational demands. An important observation from our

comparisons is that the cross-attention mechanism in MultiViT is

more effective than pure concatenation and the weighted MLP

method. This was evident when comparing MultiViT against other

multimodal baselines. Figure 3 shows the validating curve of baseline

and MultiViT models.

4.3 | Discriminative brain regions discovery

4.3.1 | Attention maps for structural imaging

In this study, using the rollout technique (Touvron et al., 2021), we

generated attention-based saliency maps for individual subjects

within the SZ and healthy control (HC) groups. These maps offer a

visualization that helps understand specific regions in the brain

where the model predominantly focuses. Gaining insights from

these attention maps is crucial to discern the model's behavior in

its decision-making process. To analyze the consistency and rele-

vance of these attention patterns, we conducted a one-sample t-

test on the attention values across the voxels. The outcome was

an attention map formed of t-values, reflecting the significance of

the difference between the observed attention values and a

hypothesized population mean for each voxel. We further

employed a two-sample t-test to identify differences in attention

patterns between the SZ and HC groups, with the objective of pin-

pointing brain regions more vulnerable in SZ. Figure 4 visualizes

the outcome of the one-sample t-test, portraying attention patterns

for the SZ and HC groups. This map elucidates significant brain

regions where the MultiViT model primarily centered its attention,

indicating potential structural implications. Figure 5 differentiates

brain regions with attention patterns that are more characteristic

of SZ versus those typical of HCs.

The one-sample t-test results indicate that the SZ and healthy

groups share major brain areas, which may overlap. The significant

brain regions contributing to the MultiViT model for predicting SZ

include the anterior cingulum, lingual gyrus, the middle part of the

orbital frontal gyrus, precentral gyrus, insula, cerebellum, supplemen-

tary motor area, and hippocampus. The brain regions contributing to

healthy predictions encompass the caudate nucleus, superior frontal

gyrus, fusiform, lingual gyrus, supplementary motor area, the posterior

crus II cerebellum, precuneus, precentral gyrus, and superior temporal

gyrus. However, the one-sample t-test cannot distinguish the core

regions associated with SZ from those of the healthy group. Conse-

quently, we employed a two-sample t-test to compare the attention

maps of individuals from each testing set between the SZ and healthy

groups. The two-sample t-test results on SZ and healthy groups reveal

that some brain regions are more significant in the SZ group than the

healthy group, including the left cerebellum, left lingual gyrus, middle

temporal gyrus, inferior temporal gyrus, and caudate nucleus. Regions

more strongly associated with the healthy group include the left pre-

cuneus, right cerebellum, left angular gyrus, right inferior frontal gyrus,

left caudate nucleus, and right insula.

TABLE 3 Testing results of each baseline and MultiViT: we
calculate average testing metrics for both unimodal and multimodal
baselines, then compare them with our new multimodal pipeline
(MultiViT).

Modal Data Bal-Acc AUC F1

Unimodal 0.757 0.757 0.747

3DCNN sMRI 0.775 0.781 0.792

3DViT sMRI 0.778 0.774 0.784

CrossViT3D sMRI 0.741 0.743 0.71

MLP sFNC 0.742 0.741 0.73

ViT sFNC 0.750 0.745 0.72

Multimodal 0.784 0.780 0.773

3DCNN-CNN sMRI + sFNC 0.791 0.784 0.771

3DViT-ViT sMRI + sFNC 0.782 0.779 0.774

3DViT-MLP sMRI + sFNC 0.780 0.778 0.773

MultiViT sMRI + sFNC 0.831 0.833 0.840

F IGURE 3 The validation accuracy curves of average(one-model
baselines), average(multimodal baselines), and MultiViT.
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4.3.2 | Attention maps for functional connectivity

The FNC matrix represents the temporal correlations among spatially

distant neurophysiological phenomena. This matrix is commonly

employed to evaluate the associations between disparate brain

regions and their interactions during diverse cognitive tasks or in a

resting state. In the present investigation, we have incorporated the

FNC matrix with attention maps derived from the MultiViT model,

facilitating the identification of brain functions that the MultiViT

model emphasizes during prediction. These functions may strongly

associate with SZ and HC subjects. Figures 6 and 7 illustrate the

attention-based saliency map of the FNC matrix on SZ and HC

groups. Nevertheless, discerning the distinctions between SZ and

HC subjects within each group remains challenging. To discern the dif-

ferences between SZ and healthy subjects, attention-based saliency

maps were constructed for the disparities between the SZ and HC

groups and the inverse. Figure 8 displays the FNC matrix capable of

revealing brain functions predominantly associated with SZ patients

rather than HCs. The labels within the FNC matrix denote various

brain functions corresponding to distinct connectivities. The regions

exhibiting robust connectivities encompass SC-SM, SC-VS, CB-SM,

CB-VS, CC-CC, and VS-DM, which could show potential relevant

functions related to SZ.

The subcortical (SC) and sensorimotor (SM) interaction plays a

pivotal role in subcortical structures, notably the basal ganglia, and

thalamus, that are fundamental to the sensorimotor system. The basal

ganglia are responsible for initiating and regulating movement by inte-

grating information from the motor cortex and other cortical regions,

ultimately promoting seamless and coordinated movement. As a relay

center for sensory and motor information, the thalamus facilitates

communication with the primary motor and somatosensory cortices

to synchronize and modulate motor activity. The SC and ventral

stream (VS) interaction primarily involves the processing of visual

information and its integration with other cognitive and motor func-

tions. The pulvinar, a subregion of the thalamus, plays a critical role in

this interaction as it relays visual information and communicates with

various regions of the visual cortex involved in the ventral stream.

Interactions between the cerebellum (CB) and the SM network are

vital for motor control, coordination, learning, and some cognitive

aspects. This interaction ensures precise and well-coordinated move-

ments and the ability to learn and refine new motor skills. Further-

more, the interaction between the CB and the VS demonstrates

visual-motor integration, wherein the cerebellum can refine and adjust

ongoing movements based on visual feedback. Additionally, the cere-

bellum is involved in visual perception and cognition aspects, such as

processing visual motion, estimating time intervals, and predicting

future events based on experience. The interaction between different

regions of the cingulo-opercular cortex (CC) can involve integrating

various cognitive functions, such as attention, working memory, and

error detection. Finally, the interaction between the VS and the dorsal

F IGURE 4 The attention map for one sample t-test shows highlighted brain regions in which the ViT model focused more. On the left are
brain regions more relevant to healthy individuals, and on the right are brain regions more relevant to schizophrenia individuals.
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medial prefrontal cortex (DM) involves integrating visual and self-

referential information to support various cognitive processes, such as

social cognition, perspective-taking, and theory of mind.

The subcortical structures (SC) and CB interaction plays an essential

role in integrating sensory, motor, and cognitive information, which sup-

ports motor control, balance, and cognitive processing. This interaction

enables the accurate and coordinated execution of movements, balance

F IGURE 5 The attention map for the two-sample t-test with a p-value of 0.02 highlights relevance levels of brain regions associated with

healthy individuals and schizophrenia. On the left are brain regions in which schizophrenia is significantly more prevalent than in healthy
individuals, indicating that these regions are significantly associated with schizophrenia. Right, are the brain regions more relevant to healthy
individuals than schizophrenia patients, that is, these regions have a greater significance in the healthy group.

F IGURE 6 Attention-based FNC matrix for the schizophrenia
patients.

F IGURE 7 Attention-based FNC matrix for healthy controls.
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and posture maintenance, and sensory and cognitive information pro-

cessing. In the context of SZ, studies have demonstrated impaired con-

nectivity within the brain, especially within connector hubs, including

those in the cerebellum and subcortical regions. This impairment has

been found to affect subcortical and cerebellar regions and the regions

involved in visual and sensorimotor processing (Yamamoto et al., 2022).

The interaction between the VS and the SM network is crucial for inte-

grating visual and motor information to support perception, action, and

cognition. This interaction enables the accurate and coordinated execu-

tion of movements, the integration of sensory and visual feedback, and

the control of attention and working memory. In the case of SZ, func-

tional disintegration between sensory and cognitive processes has been

observed. This disintegration is evident in alterations of both amplitude

and connectivity within sensory networks, including within-

sensorimotor and sensorimotor-thalamic connections. Sensory nodes

also display widespread alterations in the connectivity with higher-order

nodes (Kaufmann et al., 2015). Finally, the interaction between the VS

and the CC integrates visual and cognitive information to support atten-

tion, decision-making, and cognitive control. This interaction enables the

efficient and effective allocation of attention, the integration of reward-

related information with decision-making processes, and the flexible

adjustment of cognitive processes in response to changing task

demands. The connectivity within these regions is also affected in indi-

viduals with SZ, characterized by hypoconnectivity between cingulo-

opercular regions and hyperconnectivity between the thalamus and sen-

sory cortices. These altered connectivity patterns in SZ highlight the

need for a comprehensive, data-driven approach to understand the

complex neuropathology of this disorder (Culbreth et al., 2021).

5 | DISCUSSION AND CONCLUSION

In this investigation, we presented and employed an efficient and

comprehensive study on interpretable multimodal ViT-based model

for SZ diagnosis and biomarker identification based on attention

maps. This not only provides dependable forecasts for SZ using clini-

cal data, but also discerns connections between dual modalities. Our

experiments leveraging FNC data as a computational substrate for a

deep learning framework yielded results akin to those obtained with

fMRI data post-intensive training (Cai et al., 2020; Steardo

et al., 2020). The literature corroborates the idea that structural and

functional changes in SZ have been examined in-depth. Karlsgodt

et al. (2010) assessed structural MRI alongside diffusion tensor imag-

ing, presenting evidence that patients with SZ manifest diminished

GMV in areas such as the medial temporal, superior temporal, and

prefrontal regions, a conclusion resonating with our own observations.

Parallelly, they identified functional shifts in SZ, emphasizing pro-

nounced impairments in short-term memory and decision-making fac-

ulties. DeLisi et al. (2022) amalgamated diverse SZ-related findings,

spotlighting regions like the cerebellum and superior temporal gyrus.

In the field of computer vision, our proposed MultiViT model suc-

cessfully integrates multimodal data based on different types of brain

data, including a 3D high-dimensional sMRI and a FNC matrix repre-

senting brain functional connectivity. This data fusion mechanism ulti-

mately achieves significantly improved SZ detection results compared

to single-modal models. In addition, we employed a novel cross-

attention mechanism to effectively merge feature vectors processed

by different ViT encoders. This innovative approach allows for a more

comprehensive interpretation of the multimodal data, leading to

improved diagnostic accuracy and a deeper understanding of the

interplay between structural and functional brain changes associated

with SZ. By leveraging the strengths of each modality and the inter-

pretability of attention maps, our model not only provides reliable pre-

dictions, but also facilitates the identification of critical biomarkers.

This contributes to a better understanding of the pathophysiology of

SZ and highlights the potential of multimodal deep learning

approaches in medical diagnostics.

However, there is still significant room for improvement in diag-

nosing SZ using deep learning techniques alongside structural and

functional MRI data. For example, our work falls short in terms of

interpretability. While simple attention maps are considered in some

studies to reflect the model's “attention” to the data, there is signifi-

cant potential for improvement. This includes the use of more

advanced attention mechanisms or updated attention maps, as sug-

gested by other research. Second, our study is limited by the relatively

small data set. Therefore, the use of transfer learning methods could

further improve detection accuracy. For example, we could use repre-

sentative learning to train feature extractors for high-dimensional

sMRI data on large datasets, and then fine-tune them with a smaller

set of SZ-related sMRI data. This approach may yield more meaningful

results. In addition, representative learning can produce lower-

dimensional features that can further speed up the training and infer-

ence processes. By addressing these areas, we can make significant

progress in improving the diagnostic capabilities and robustness of

our MultiViT model, paving the way for more effective and reliable SZ

diagnosis using multimodal deep learning approaches.

In addition, we re-evaluated the clinical application prospects of

our study. In recent years, research on AI-based diagnostic models,

F IGURE 8 Attention-based FNC matrix for the difference
between schizophrenia over healthy controls.
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especially for brain diseases, has become quite popular. However, in

terms of clinical application, some studies, including our MultiViT

model, are still far from real-world implementation. For clinical diagno-

sis, it is crucial not only to consider the overall accuracy, but also to

minimize the potential negative impact of misdiagnosis. In addition, as

an adjunct diagnostic tool, the model should be able to interact with

healthcare professionals. Clinicians should be able to adjust the

parameters of the model to provide statistical predictions rather than

simple binary results. In addition, improving computational efficiency

and model generalization is critical for clinical application. An effective

clinical diagnostic model should have strong generalizability, meaning

that it can provide accurate predictions across diverse patient data.

This is another critical area that requires further research. By addres-

sing these considerations, our model will increase its utility as a reli-

able and interactive tool for healthcare professionals, ultimately

contributing to better patient outcomes in the diagnosis and treat-

ment of SZ.
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