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Abstract

The characterisation of resting-state networks (RSNs) using neuroimaging techniques

has significantly contributed to our understanding of the organisation of brain activ-

ity. Prior work has demonstrated the electrophysiological basis of RSNs and their

dynamic nature, revealing transient activations of brain networks with millisecond

timescales. While previous research has confirmed the comparability of RSNs identi-

fied by electroencephalography (EEG) to those identified by magnetoencephalogra-

phy (MEG) and functional magnetic resonance imaging (fMRI), most studies have

utilised static analysis techniques, ignoring the dynamic nature of brain activity.

Often, these studies use high-density EEG systems, which limit their applicability in

clinical settings. Addressing these gaps, our research studies RSNs using medium-

density EEG systems (61 sensors), comparing both static and dynamic brain network

features to those obtained from a high-density MEG system (306 sensors). We assess

the qualitative and quantitative comparability of EEG-derived RSNs to those from

MEG, including their ability to capture age-related effects, and explore the reproduc-

ibility of dynamic RSNs within and across the modalities. Our findings suggest that

both MEG and EEG offer comparable static and dynamic network descriptions, albeit

with MEG offering some increased sensitivity and reproducibility. Such RSNs and

their comparability across the two modalities remained consistent qualitatively but

not quantitatively when the data were reconstructed without subject-specific struc-

tural MRI images.
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1 | INTRODUCTION

Resting-state networks (RSNs) were first observed in functional mag-

netic resonance imaging (fMRI) and positron emission tomography in

the late 20th century and later independently identified in magneto-

encephalography (MEG) and electroencephalography (EEG) (Biswal

et al., 1995; Shulman et al., 1997). A study by Brookes et al. (2011)

provided robust evidence for the electrophysiological basis of RSNs,

employing temporal independent component analysis (ICA) on MEG

amplitude envelopes to demonstrate that the spatial patterns of brain

networks in MEG resemble those of the RSNs previously identified by

fMRI (Brookes et al., 2011). While early descriptions of RSNs were
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essentially static (i.e., time-averaged), further research has revealed

that they can be well described as activating in a transient manner,

with different networks activating at distinct time points (Baker

et al., 2014; Gohil et al., 2022).

The contribution of electrophysiology to our understanding of

RSNs is underscored by their functional significance. MEG and EEG

studies have allowed RSNs to be linked to sensorimotor functions at

fast subsecond timescales, as well as to a range of cognitive tasks con-

cerning working memory and language comprehension (Barnes

et al., 2015; Becker et al., 2020; Quinn et al., 2018). Research on neu-

ropsychiatric disorders has also elucidated the functional relevance of

RSNs across various pathological conditions, including Alzheimer's dis-

ease, major depressive disorder, and schizophrenia, highlighting their

utility in understanding brain dysfunction (Leuchter et al., 2012;

Lottman et al., 2019; Sitnikova et al., 2018). From a technical stand-

point, electrophysiological analysis of RSNs offers unparalleled insight

into the spectral and temporal domains. M/EEG-derived functional

networks allow for the investigation of their spectral contents; empiri-

cal evidence suggests that neural activities can be segmented into dis-

tinct states of global synchronous fluctuations, each characterised by

specific oscillatory frequencies (de Pasquale et al., 2010; Mantini

et al., 2007). Furthermore, the superior temporal resolution of electro-

physiological approaches facilitates a detailed examination of the tran-

sient dynamics of resting-state and task-based networks. For

example, previous research indicates that M/EEG-derived RSNs acti-

vate on faster timescales (�100–200 ms) than those discerned

through fMRI (�10 s) (Baker et al., 2014; Gohil et al., 2022).

To date, studies examining electrophysiological RSNs, particularly

those based on the amplitude time-courses of brain regions, have

affirmed a reasonable comparability of EEG RSNs to their MEG or

fMRI counterparts (Knyazev et al., 2016; Liu et al., 2017; Siems

et al., 2016; Sockeel et al., 2016). However, these studies relied on

static analyses (by which we mean that they do not provide a time-

varying description of interactions between brain areas), such as spa-

tial ICA or seed-based correlation. More recently, Coquelet et al.

(2020) evaluated the correspondence of RSNs between 306-channel

MEG and 256-channel EEG data (Coquelet et al., 2020). This study

revealed that while static functional connectivity (FC) patterns are

generally consistent across modalities in the resting state, dynamic FC

shows less agreement. Their dynamic FC methods, however, used

sliding windows and clustering approaches, which are heavily depen-

dent on user-defined hyperparameters and compromise temporal res-

olution. Finally, studies to date have typically employed high-density

EEG systems (>100 channels) (Coquelet et al., 2020; Knyazev

et al., 2016; Liu et al., 2017), facilitating the computation of RSNs in

brain space, where spatial leakage can be more appropriately con-

trolled and the networks are more interpretable (Colclough

et al., 2015). Yet, this overlooks the wider availability and clinical util-

ity of lower-density EEG systems, for which the ability to reliably esti-

mate RSNs in brain space would be a valuable asset.

Acknowledging these limitations, this article aims to establish the

efficacy of EEG in providing static and dynamic functional network

perspectives akin to those obtained from MEG and fMRI within brain

space, with a state-of-the-art dynamic modelling technique—time-

delay embedded hidden Markov model (TDE-HMM) (Vidaurre, Hunt,

et al., 2018) and without the need for high density data. Drawing on

existing literature, we hypothesised that both EEG and MEG will pro-

vide comparable static and dynamic RSN descriptions, with dynamic

features anticipated to exhibit less consistency between modalities.

Using MEG RSNs as a benchmark for assessing fast oscillatory net-

works, we compared static and dynamic network descriptions against

those derived from EEG, with the aim of establishing a basis set of

EEG RSNs that can be identified with medium-density EEG data (�61

channels). In addition, we also examined whether M/EEG RSNs,

derived from data reconstructed without subject-specific structural

MRI (sMRI) images, can yield network descriptions similar to those

obtained using subject sMRI images without loss of quality.

This endeavour seeks to demonstrate that MEG and EEG provide

similar and reliable network descriptions, allowing for research that

can leverage the accessibility and cost-effectiveness of EEG in the

exploration of brain oscillatory networks in both health and disease.

Additionally, this work provides a publicly available set of M/EEG

RSNs, complete with scripts for generating precise network infer-

ences, thereby contributing to our comprehensive understanding of

the complementary potential of MEG and EEG in brain network

research.

2 | MATERIALS AND METHODS

2.1 | Datasets

In this study, we used the openly available resting-state EEG and

MEG datasets called the Leipzig Study for Mind-Body-Emotion Inter-

actions (LEMON) dataset and the Cambridge Centre for Ageing and

Neuroscience (Cam-CAN) dataset, respectively. Both datasets were

obtained from healthy adults, and recordings were measured while

participants were seated. The two datasets were matched to have an

identical age distribution and number of subjects. To specify, each

dataset was divided into subsets of a 5-year age interval, and for

imbalances between each subset of two datasets, subjects were ran-

domly subsampled from the larger subset to ensure parity. The age-

matched datasets comprised a total of 96 subjects, consisting of

60 young (aged between 20 and 35 years) and 36 old (aged between

55 and 80 years) participants1 (Figure A1). In the EEG data, the young

group comprised 44 females and 16 males, while the old group con-

sisted of 23 females and 13 males. In the MEG data, the young group

comprised 25 females and 35 males, while the old group consisted of

19 females and 17 males. The protocols and demographics related to

the data collection are outlined in Babayan et al. (2019) for LEMON

and Shafto et al. (2014) for Cam-CAN in detail and are partly repeated

here for clarity.

1These age ranges were selected for the young and old cohorts based on the age distribution

of the LEMON dataset (i.e., how the two groups were divided in the original dataset)

(Babayan et al., 2019).
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2.1.1 | EEG data

The EEG recordings were obtained using a BrainAMP MR plus ampli-

fier with 62-channel ActiCAP electrodes (Brain Products, Gilching,

Germany). These channels consisted of 61 EEG electrodes and 1 verti-

cal electrooculogram channel. A surrogate horizontal electrooculo-

gram channel was additionally added by taking the difference

between channels F7 and F8. The channel montage adapted the 10–

10 layout, which was referenced and grounded at FCz and the ster-

num, respectively. The acquisition time of the recordings was 16, with

1 min blocks alternating between eyes-closed and eyes-open condi-

tions. Signals were collected with a sampling rate of 2500 Hz and

band-pass filtered between 0.015 Hz and 1 kHz. For coregistration

purposes, the T1-weighted sMRI was collected over 8 min 22 s, using

Magnetization-Prepared 2 RApid Acquisition Gradient Echos

(MP2RAGE) sequences with a 3 T MAGNETOM Verio scanner

(Siemens Healthcare, Erlangen, Germany) equipped with a 32-channel

head coil.

2.1.2 | MEG data

The MEG recordings were obtained using a 306-channel Vector

View system (Elekta Neuromag, Helsinki, Finland), consisting of

102 magnetometers and 204 orthogonal planar gradiometers.

The acquisition time of the recordings was 8 min 40 s, with the

first 20 s discarded. Only eyes-closed resting-state data

were recorded at a sampling rate of 1 kHz, band-pass filtered

between 0.03 and 330 Hz. The eye- and pulse-related artefacts

were monitored using two pairs of biopolar EOG electrodes

and one pair of bipolar electrocardiogram (ECG) electrodes,

respectively. For coregistration, the T1-weighted sMRI was

recorded for 4 min 32 s, using a Magnetization-Prepared RApid

Gradient Echos sequence with a 3 T TIM Trio scanner (Siemens

Healthcare, Erlangen, Germany) equipped with a 32-channel

head coil.

2.2 | Data preprocessing and source
reconstruction

The preprocessing and source reconstruction processes largely fol-

lowed the pipeline outlined in Gohil et al. (2023). Detailed steps of the

pipeline applied to the M/EEG datasets were slightly different due to

the unique data characteristics intrinsic to each dataset. However,

they were aligned as closely as possible to mitigate any unknown vari-

ance that could arise from discrepancies in these steps. Before apply-

ing the pipeline, the MEG data were Maxfiltered using the temporal

signal-space separation method to separate recordings of neural activ-

ity within the brain from any external noise sources (Quinn

et al., 2018). The entire process of preprocessing and source recon-

struction was conducted using the OHBA Software Library (OSL)

package (Quinn et al., 2023).

2.2.1 | Preprocessing

The LEMON and Cam-CAN data were first cropped to exclude the

first 30 s of the recordings to account for the subject acclimation and

stabilisation of measurement devices. These data were band-pass fil-

tered between 0.5 and 125 Hz using a fifth-order IIR Butterworth

filter and subsequently notch filtered at 50 and 100 Hz to remove

mains artefact (and additionally at 88 Hz for Cam-CAN to

remove spike artefacts). The data were then downsampled to 250 Hz.

The bad segments and channels with significantly high variance were

removed using an automated generalised-extreme studentised deviate

algorithm (Rosner, 1983). For Cam-CAN, bad segment and channel

detection procedures were applied separately to different sensor

types (i.e., magnetometers and gradiometers). The data were further

denoised by applying an FastICA decomposition (Hyvarinen, 1999) to

the M/EEG data, decomposing signals into 64 and 54 components,

respectively. Components associated with ocular artefacts (i.e., blinks

and saccades) were removed, and ECG-related artefacts were addi-

tionally excluded for Cam-CAN. Prior to the ICA decomposition, bad

segments from EOG recordings were identified to prevent the inad-

vertent removal of pertinent M/EEG signals due to concurrent noise

artefacts in both M/EEG and EOG. Finally, to keep the data dimension

consistent across the subjects, any bad channels detected earlier were

interpolated from ICA-cleaned data using spherical spline interpola-

tion (Perrin et al., 1989).

2.2.2 | Source reconstruction

The M/EEG data were coregistered to sMRI image and digitised head

points using the affine transformation algorithm in OSL. For LEMON,

a boundary element model (BEM) with triple layers of scalp, skull, and

cortex surfaces was employed as a head model; for Cam-CAN, a BEM

with a single layer of a scalp surface was employed. The surfaces of a

scalp, inner skull, and brain were extracted from sMRI data using FSL's

BET tool (Jenkinson et al., 2005; Smith, 2002). The nose was not

included during the coregistration step, since the sMRI images were

defaced.

After coregistration, the preprocessed sensor data were band-

pass filtered between 1 and 45 Hz and reconstructed onto an 8 mm

isotropic grid using a linearly constrained minimum variance (LCMV)

volumetric beamformer (Veen & Buckley, 1988). The rank of a data

covariance matrix used to compute the beamformer weights was set

to 50,2 which regularises the covariance estimation and is comfortably

below the rank of both the MEG (following Maxfiltering) and EEG

data. Voxels were then parcellated into 38 anatomically defined

2It is worth considering that, in matching the rank of both the MEG and EEG data to 50, we

may have lost some of the additional spatial resolution available in MEG, as the MEG data

has a higher rank than EEG data at the sensor level, even after maxfiltering. Therefore, this

matched rank could have artificially increased the similarity between the EEG and MEG

descriptions beyond what would naturally occur. In this article, however, we decided that the

most appropriate strategy is to align the preprocessing steps as closely as possible across

both modalities, to ensure that any observed differences between the two are not due to

trivial variations arising from preprocessing and source reconstruction steps.
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regions. Source reconstructed signals were obtained by applying prin-

cipal component analysis (PCA) to these voxel-wise data, wherein a

time series of each parcel would be the first principal component

(PC) that explains most variance from all voxels within a parcel. The

symmetric multivariate leakage reduction technique (Colclough

et al., 2015) was applied to minimise spurious correlations between all

parcels and reduce source/spatial leakage including so-called “inher-
ited” or “ghost interactions” (Palva et al., 2018). Finally, the combina-

tion of the LCMV volumetric beamformer and the PCA used in the

parcel time series calculations means that the sign of the estimated

F IGURE 1 Overview of brain network feature analysis. This figure illustrates the methodology for extracting brain network features from
MEG and EEG time series data. The brain network features we used consisted of power spectral density (PSD), spatial power distribution, and
functional connectivity maps derived from spectral information within M/EEG recordings (top). The time series are segmented into discrete state
activations via a Hidden Markov Model (HMM), resulting in an HMM state time course (middle). This process allows for the differentiation
between dynamic network features—obtained from state-specific descriptions—and static network features, which are computed by time-
averaging across all states. The HMM parameterises functional resting-state networks using a transition probability matrix and a multivariate
Gaussian observation model with distinct means and covariances for each state by minimising variational free energy (bottom). The transition
matrix quantifies the likelihood of transition from one state to another over consecutive time points, whereas the observation model elucidates
the data generating process based on the latent (i.e., hidden state) representations. When combined with time-delay embedding, the HMM can
identify states with distinct parcel power spectra and coherence networks (not shown).
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parcel time series varies arbitrarily across subjects. The sign of each

channel was therefore matched across subjects using a random flip

algorithm described in Vidaurre, Hunt, et al. (2018).

The source reconstruction procedure was repeated using the

standard Montreal Neurological Institute (MNI) T1 structural brain

image instead of subject-specific sMRI images. We employed this

approach to explore whether similar M/EEG RSN features could be

discerned using a standard brain structural image (i.e., without subject

sMRI files) and if the comparability between MEG and EEG remains

under these conditions. Unless indicated otherwise, all results pre-

sented herein are based on the data reconstructed with the subject-

specific sMRI images.

2.2.3 | Data organisation

To make the LEMON and Cam-CAN dataset more comparable, only

eyes-closed segments were extracted from the source reconstructed

EEG LEMON data. After extracting the eyes-closed segments, the

mean and standard deviation of the data lengths were 476.4

± 23.78 s for LEMON and 521.9 ± 59.77 s for Cam-CAN, with an

average data length ratio between the two resulting in 0.9128. Given

the data length roughly matched and to retain as much MEG data as

possible, we did not further shorten the Cam-CAN dataset to match

LEMON. All data analyses delineated below took place in source

space.

2.3 | Hidden Markov model

Once the data were source reconstructed, the next step is to identify

dynamic RSNs and pinpoint the time periods during which they acti-

vate. The TDE-HMM is a generative model that can partition time

series data into a sequence of recurring functional brain networks

called states (Vidaurre, Hunt, et al., 2018). Each state represents an

RSN characterised by distinct spatiotemporal patterns of spectral con-

tent. The basic structure of the TDE-HMM is depicted in Figure 1.

The HMM typically comprises two primary components: a set of

hidden states and an observation model for each state. Our observa-

tion model is a multivariate normal (Gaussian) distribution that has a

distinct covariance matrix for each state. Crucially, the HMM is fit to

TDE data, which augments the parcel time series with extra channels

containing time-lagged versions of the original time series. Using TDE

makes the state-specific covariance matrices sensitive to the power

and frequency of oscillations in the original time series and results in

states that have distinct power spectra for each parcel and coherence

networks (Gohil et al., 2023).

The HMM parameters were inferred using the variational Bayes-

ian (VB) inference (Bishop, 2006; Rezek & Roberts, 2005). This

approach recasts the inference process as an optimisation problem,

wherein the objective is to minimise the variational free energy. Using

the VB method allows the model to learn uncertainty in parameter

estimates as probabilistic distributions. To scale the learning process

to large datasets, we utilised the stochastic version of the VB method

adapted from (Vidaurre, Abeysuriya, et al., 2018). As a result, the

HMM outputs a time course of posterior probabilities, which signifies

the probability of a state activation at each time point. By extracting

the maximum a posteriori probabilities across all states by applying an

argmax operation to these probabilities, we can generate a Viterbi

path, or a state time course, delineating the most probable, yet mutu-

ally exclusive, state at each time point. The training process is

described below. For more details on the design and implementation

of the TDE-HMM, readers should refer to Vidaurre, Hunt, et al. (2018)

and Gohil et al. (2023).

2.3.1 | Data preparation

Before training a TDE-HMM model, the source reconstructed data

were prepared to allow the model to learn states with unique spatio-

spectral patterns. First, the data were TDE with �7 lags. With a

38-region parcellation, this embedding resulted in a total of 570 chan-

nels. PCA was then applied to reduce the dimensionality down to

80 channels to reduce memory requirements, and the transformed

data were subsequently standardised over time. Since we are primar-

ily interested in the transient patterns of spectral events, which are

reflected in the state covariance matrices, we fixed the state mean

vectors of the observation model to zero during the training process

(Gohil et al., 2023). These prepared data served as the input training

data, which was then shuffled and batched prior to model training.

2.3.2 | Hyperparameters

Training the model involves several key hyperparameters. First, the

number of states was set to 6 to facilitate a reasonably low-dimensional

data representation, which tend to be more reproducible and interpret-

able (see Section 2.3.5 for its validation). Next, we selected 64 as the

batch size necessary for the stochastic VB inference. The input

sequence length for batching the time series data was 800 samples. This

length ensures minimal discontinuities between batched data, leading to

less noisy updates of the parameter estimates. Finally, the Adam optimi-

ser (Kingma & Ba, 2014) was used for updating the trainable parameters

with a learning rate of 0.01 over a total of 20 training epochs.

2.3.3 | Model initialisation

As the optimisation process for the HMM is stochastic, a certain level

of variability in the final model parameters, referred to as run-to-run

variability, is inevitable. To mitigate this, we use a number of random

starts, or “initialisations.” This initialisation process was repeated five

times, trained for two epochs in each repetition. The initialisation that

yielded the lowest free energy was selected for the full model training.

This approach has previously been shown to produce reproducible

results (Gohil et al., 2023).
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2.3.4 | Model runs

Despite the initialisation technique above, different model runs may

converge to different local optima due to the stochastic nature of the

parameter optimisation process. To obtain the best possible parame-

ter estimates, therefore, the HMM model was trained 10 times using

the identical training dataset for both LEMON and Cam-CAN. From

these 10 runs, a model with the lowest free energy was selected as

the best run. This procedure was again repeated five times,3 yielding a

total of 50 runs (and 5 best runs) for each dataset. The best of the five

best runs, hereinafter denoted as the optimal run, was chosen to be

used for all subsequent analyses. As the order of inferred states is ran-

dom for each model, the EEG and MEG states from their respective

optimal HMM runs were manually aligned by eye4 based on their

power and FC spatial patterns.

2.3.5 | Model validation

Before the datasets were analysed, we validated that 6 states produce

interpretable RSNs without any loss in training quality. For validation

purposes, we trained 50 HMM runs with 8 and 10 states, following

the method outlined in Section 2.3.4. For each set of dynamic RSNs

(for 6, 8, and 10 states), we counted how many times a particular RSN

appears across the best runs by qualitatively comparing its PSDs,

power maps, and FC networks (see Section 2.4). Results indicated that

with six states, the HMM consistently converged to the same six

RSNs across the best runs. In contrast, for 8 and 10 states, approxi-

mately 6 RSNs demonstrated consistency across the best runs, while

the remaining states exhibited greater variability across runs for both

EEG and MEG (i.e., the additional states corresponded to less repro-

ducible RSNs). Figure A7 shows 10-state dynamic M/EEG RSNs,

inferred from the optimal model run, as an example. The configuration

of six states that guarantees the network features with the lowest

model run-to-run variability was selected to ensure easier comparison

between the modalities.

2.4 | Network feature analysis

To compare the RSNs of the two modalities, we had to begin by

extracting their static and dynamic network features. These features

included PSDs, power maps, and FC networks, which were obtained

by either averaging over the entire recording duration or computing

state-specific descriptions based on the state time courses (Figure 1).

These features were qualitatively compared across modalities and

evaluated for their efficacy in capturing age-related effects at the

group level. Additionally, for the age classification task (see

Section 2.7), we specifically computed TDE-PCA covariance matrices

and summary statistics as input network features. The network fea-

ture computations outlined in this subsection were largely adopted

from Gohil et al. (2022) and conducted using the OSL Dynamics tool-

box (Gohil et al., 2023).

When interpreting these network features, it is important to note

that the approach we used for source reconstruction (i.e., unit noise

gain invariance LCMV beamformer) implicates the loss of absolute

amplitude information from the sensor recordings. This step was nec-

essary to address the depth bias in source reconstruction, but it pre-

cludes us from making any direct comparison of absolute network

features across modalities. Furthermore, we standardised (i.e., z-trans-

formed) the data across subjects before computing network features

(see below), which eliminates amplitude information across individ-

uals. This procedure allows us to compare the relative network fea-

tures in each frequency band across modalities and subjects.

Therefore, all network features employed in this article are measures

relative to the time-average for each sensor and subject, not absolute

measures.

2.4.1 | General linear model

We employed a group-level general linear model (GLM) to study

age-related effects and measure the differences in various network

features between the young and old groups. The value of a

network feature (e.g., power for a parcel, or FC for a parcel-pair, at a

particular frequency) as it varied of subjects was fed in as the depen-

dent variable to the group GLM, and the GLM was fitted indepen-

dently to each network feature. The group-level GLM design matrix

(Figure A2) contained two regressors that modelled the group means

of the young and old cohorts separately. Sex and head size were

included as covariates to remove any confounding effects introduced

by these variables. In particular, the GLM contained two sex regres-

sors, one for male and the other for female, and one head size regres-

sor, all of which were demeaned prior to model fitting. From the fitted

GLMs we computed the mean group differences as a contrast of

parameter estimates (COPEs). Group-averaged values of each net-

work feature were simply taken from the regression estimates of the

fitted GLMs. For a comprehensive overview of the GLM and its appli-

cation to neuroimaging data, readers should consult Quinn

et al. (2024).

2.4.2 | Power spectral densities

First, we computed subject-level PSDs to examine the distribution of

power across distinct frequency ranges. For the static analysis, we

employed Welch's method (Welch, 1967) on the original parcel time

course to calculate static PSDs of size N�M�P½ �, where N is the

3This procedure applied exclusively to analyses involving data reconstructed with subject

sMRI images. For data reconstructed with the standard MNI template, the procedure was not

reiterated. Instead, the optimal run was chosen from a total of 10 runs.
4Typically, state alignments in multiple HMM runs are conducted automatically through the

linear sum assignment algorithm (Crouse, 2016). This approach tends to yield satisfactory

results only when HMMs are trained on datasets of identical modalities. Aligning states

across HMM runs trained on datasets of different modalities thus necessitated manual

intervention due to the algorithm's decreased efficacy under such conditions. However, it

should be noted that while manual alignment by eye was reliable for matching six states in

our case, this process may still have introduced some human-induced bias.
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number of subjects, M is the number of parcels, and P is the number

of frequency bins. Each PSD was calculated using a 2-s Hann window

with 50% overlap across a 1.5–45Hz frequency range, and each par-

cel time course was standardised (to have zero mean and unit vari-

ance) at the individual subject level before calculation. To compare

the static PSDs between the young and old cohorts, PSDs were fitted

to a GLM, producing the group-averaged PSDs of size M�P½ �.
For the dynamic analysis, the power spectrum for each subject,

region, and state was separately calculated using the multi-taper

method, which is the typical approach used with TDE-HMMs

(Vidaurre et al., 2016). As in the static analysis, the data were standar-

dised at the individual subject level. PSDs for each state were esti-

mated using the source data and inferred state time course, which

helped identifying time points corresponding to the active states. For

each subject and state, a multi-taper spectrogram was generated over

the entire time points during which a single state was activated, using

seven tapers with a time-half bandwidth of 4. By averaging a spectro-

gram over time, state-specific multi-taper spectra (i.e., dynamic PSDs)

of size N�M�P½ � were obtained. In addition, state-specific coherence

spectra of size N�M�M�P½ � were calculated using the multi-taper

cross-spectral densities. For visualisation purposes, the mean PSD

across all states, weighted by the duration of state activations, was

subtracted from the state-specific multi-taper spectra at the subject

level, and the group-averaged dynamic PSDs were computed by aver-

aging over the subjects in each group.

2.4.3 | Power maps

Power maps were generated by averaging PSDs across specified fre-

quency ranges of 1.5–20 Hz (wide-band), 1.5–4 Hz (delta), 4–8 Hz

(theta), 8–13 Hz (alpha), and 13–20 Hz (beta). These frequency bands

were manually defined, rather than by using the non-negative matrix

factorisation method employed in Gohil et al. (2023), due to the fail-

ure of EEG data to converge during factorisation. For static analyses,

power maps were derived from static PSDs; for dynamic analyses, we

used dynamic, state-specific multi-taper spectra. Mean group differ-

ences in static power maps were quantified as COPEs by fitting the

power maps to GLMs. For visualisation purposes, power values across

brain regions were voxel-weighted and interpolated. No threshold

was applied to the plots. In dynamic power maps, the mean power

map across all states, weighted by the duration of state activations,

was subtracted from the state-specific power maps at the subject

level.

2.4.4 | FC networks

FC was measured as the amplitude envelope correlation (AEC) for

static analyses and coherence for dynamic analyses. The preference

for AEC in static analyses was due to the method's known consistency

in capturing stationary connectivity measures with relatively high

test–retest reliability (Colclough et al., 2016). Amplitude envelopes

were computed by applying the Hilbert transform to the source data,

which were band-pass filtered between 1.5 and 20 Hz and subse-

quently standardised. The static AEC networks were estimated by tak-

ing pairwise correlations of these amplitude envelopes across brain

regions for each subject.

Conversely, the dynamic coherence networks were derived by

averaging a coherence matrix for each state across 1.5–20 Hz. Note

that it is conventional to use AEC for the static analysis and coherence

for the dynamic analysis. Since the HMM infers coherence networks

given the TDE data, using coherence is better suited to the dynamic

case (Gohil et al., 2023). Moreover, applying AEC to dynamic FC usu-

ally involves segmenting signals according to state time courses and

concatenating these segments. This process, however, can introduce

edge effects and phase discontinuities, which may be detrimental to

the Hilbert transform and its amplitude envelope. On the other hand,

we opted not to use coherence for static analyses because it is

reported to perform poorly in static connectivity estimation, showing

low test–retest reliability (Colclough et al., 2016).

A threshold corresponding to the 95th percentile was applied to

the FC networks for visualisation. In dynamic analyses, FC networks

averaged across all states, weighted by the duration of state activa-

tions, were subtracted from the state-specific FC maps.

2.4.5 | Summary statistics of network dynamics

In the age group classification task (outlined in Section 2.7), we incor-

porated summary statistics detailing the dynamics of RSNs as part of

the input features for our classifier. Four summary metrics were com-

puted to quantify the temporal characteristics of the HMM states for

each subject (Baker et al., 2014; Gohil et al., 2023). These metrics

were calculated using the state time courses and include:

• Fractional occupancy: the proportion of the total time spent in

each state.

• Mean lifetime: the average amount of time spent in each state

before transitioning into another state.

• Mean interval: the average amount of time elapsed between visits

to the same state.

• Switching rate: the number of state visits per second.

2.4.6 | TDE-PCA covariance matrix

Another input feature we used for the classification task was static

and dynamic TDE-PCA covariance matrices. These features summa-

rise the spatiotemporal properties of the source data. Subject-specific

static TDE-PCA covariance matrices were generated by calculating

the covariance of the TDE parcel data for each subject, performing a

PCA to reduce the data to a rank of 80 and then standardising the

resulting PCs. Note that this corresponds precisely to the steps taken

in the data preparation to compute what we refer to as the standar-

dised PCA-reduced TDE data (cf., Section 2.3.1).
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The HMM explicitly infers dynamic TDE-PCA covariance matri-

ces. However, these values are group-level estimates. To calculate

subject-specific estimates of the dynamic TDE-PCA covariance, we

used the dual-estimation method (Huang et al., 2024; Vidaurre

et al., 2021), where we fixed the state probabilities in the group-level

HMM and re-estimated the state TDE-PCA covariance values using

the subject-wise prepared source data.

2.5 | Statistical analysis

Having extracted the static and dynamic RSN features, we next exam-

ined the statistical differences between the two age groups to probe

how age-related effects are represented by each modality. We

employed non-parametric permutation tests for all pertinent brain

network features, using t-statistics as the permuted statistic (Holmes

et al., 1996; Nichols & Holmes, 2002). For PSDs, we determined

group-level significance using a two-tailed cluster permutation test.

Clusters were formed over frequencies, with a cluster-forming thresh-

old set to 3. For power maps, we utilised a two-tailed max-t permuta-

tion test to evaluate group-level significance.

For both types of permutation tests, a metric of interest was first

fitted to a group-level GLM as previously described. From the fitted

GLMs, we computed COPEs (i.e., mean group differences) and their

variances, from which t-statistics could be calculated (Quinn

et al., 2024). The group regressors were permuted 5000 and 10,000

times to construct a null distribution for the cluster and max-t permu-

tation tests, respectively. We then selected a significance threshold

from this null distribution for statistical testing.

Due to the multiplicity of different non-parametric permutation

tests, we adjusted for multiple comparisons across frequency bands

and states using Bonferroni correction. For the number of bands and

states we accounted for, please refer to the figure legends for further

details. This correction was applied within the MEG or EEG dataset;

tests repeating across the modalities were not treated as part of the

same statistical family.

2.6 | Reproducibility of static and dynamic RSNs

To gauge whether the static RSNs derived from the EEG and MEG

data are reproducible, we split each dataset into two halves and

inferred networks on each half separately (Gohil et al., 2022). For each

half, we compared static PSDs, power maps, and FC networks both

within and across modalities. PSDs were averaged across subjects and

parcels, while power maps and FC networks were averaged over a fre-

quency range of 1.5–20 Hz and across subjects.

In Section 2.3.4, it was noted that the HMM is prone to converging

to local optima, resulting in the model potentially arriving at similar vari-

ational free energies with different parameter estimates. Therefore, in

addition to the initialisation method and the selection of the optimal

runs, we implemented an additional validation step that assessed repro-

ducibility across split-half datasets. Specifically, the LEMON and Cam-

CAN datasets were each divided into two halves, with separate HMMs

trained on each subset. For each half, a model was trained 10 times.

We assessed the reproducibility of the network dynamics through

three measures. First, we examined the spatial distribution of power

within and across the modalities by comparing the state-specific power

maps derived from each of the split-half data. Next, we quantified the

similarity of group-level state covariance matrices both within and across

modalities by computing RV coefficients for pairs of matrices (Robert &

Escoufier, 1976). Finally, we evaluated the consistency of inferred transi-

tion probability matrices within and across modalities using the Jensen–

Shannon (JS) distance (Lin, 1991). This metric was chosen for its symmet-

ric nature and finite values, making it suitable for comparing probabilistic

distributions. The JS distance was calculated for each row of transition

probability matrices, and these values were averaged over all rows. This

approach treats each row as a distinct probability distribution, viewing

the transitions from one state to every other as separate entities and

considering the overall similarity across these distributions.

It should be noted that power maps and RV coefficients were cal-

culated using the optimal HMM run with the lowest variational free

energy. The JS distances, on the other hand, were computed using all

10 runs. For each comparison within and across modalities, a distribu-

tion of JS distances was obtained from permuted pairs of 10 HMM

runs across two split-half datasets. We additionally tested whether

the JS distances within EEG and MEG are drawn from the same distri-

bution using the Wilcoxon rank-sum test, after checking the assump-

tions of normality and homogeneity of variances.

2.7 | Age group classifications

Finally, to evaluate the degree to which the network descriptions

derived from MEG and EEG are meaningful, we assessed their utility in

predicting age groups by employing a logistic regression classifier with

L2 regularisation (Hoerl & Kennard, 1970; Ng, 2004). The task incorpo-

rated three distinct categories of input features: static, dynamic, and a

combination of both. Static features comprised static TDE-PCA covari-

ances, while dynamic features included dynamic TDE-PCA covariances

alongside summary statistics representing network dynamics. These

input features were concatenated before training a classifier.

Separate classifiers were trained for each category of input features

with a nested cross-validation approach, which involved two levels of

cross-validation. In this framework, the inner cross-validation focused on

hyperparameter optimisation, while the outer cross-validation estimated

the generalisation error across multiple test sets. In the outer loop, input

features were randomly shuffled and subjected to a fivefold cross-

validation. The training set partitioned from this outer loop underwent

another fivefold cross-validation within the inner loop. For the inner

cross-validation, we standardised the data and applied dimensionality

reduction (i.e., PCA with whitening) before fitting any classifiers to

enhance predictive accuracy. The optimal number of PCswas determined

via a grid search on the inner training folds over 10, 20, and 30 PCs.

The best-performing classifier from the inner loop was then

selected and evaluated on the test set in the outer loop to compute its
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overall predictive accuracy. Here, the test set was processed using the

same standardisation and PCA parameters fitted on the training set to

ensure consistency across data splits and maintain fair model evalua-

tion. This entire nested cross-validation procedure was repeated

10 times. We calculated and reported the mean and standard deviation

of the accumulated test accuracies to provide a comprehensive over-

view of the classifier's performance on the M/EEG network features.

To determine if the test accuracies exceeded the level anticipated

by random chance alone (i.e., 50%), a one-tailed, one-sample t test was

used. We employed a two-tailed, two-samples t test to assess whether

there are significant differences in the prediction scores between MEG

and EEG, as well as to examine if the prediction scores varied depend-

ing on how the data were reconstructed (i.e., the use of subject sMRI

data in source reconstruction). The significance of all tests was evalu-

ated against a Bonferroni-corrected threshold, adjusted for three cate-

gories of input features. The assumptions of normality and

homogeneity of variances were verified prior to conducting these tests.

When the assumption of equal variances was violated, we employed

Welch's t test as an alternative to the standard two-sample t test.

2.8 | Use of artificial intelligence assistance

While preparing this article, the authors used ChatGPT to refine the

styles and grammar of the parts of the written text. This tool was

never used to create and write new content. The authors reviewed

and edited any changes made and take full responsibility for the con-

tent of the publication.

2.9 | Data and code accessibility

For the original LEMON and Cam-CAN datasets, the readers should refer

to Babayan et al. (2019) and Shafto et al. (2014), respectively. All codes for

analyses and data visualisations, including scripts for preprocessing, source

reconstruction, and model training, were written in Python and shared at

https://github.com/OHBA-analysis/Cho2024_MEEG_RSN. Some of the

scriptswere built upon theOSLDynamics software (Gohil et al., 2023). The

inferred HMM parameters and computed RSN features are shared in the

same repository. Further requests for prepared data or concerns regarding

the codes should be directed to andwill be fulfilled by the authors.

3 | RESULTS

3.1 | Static analysis

3.1.1 | Static RSN features are qualitatively similar
across the modalities

As discussed in the Introduction, the comparability between static

functional brain network features of MEG and EEG has been estab-

lished by previous literature. To ascertain this similarity with a

medium-density EEG (61 channels), we examined how static RSN fea-

tures qualitatively compare between these modalities (Figure 2). The

subject-averaged, wide-band (1.5–20 Hz) power maps for EEG and

MEG both revealed pronounced activation in the frontal,

parieto-occipital, and sensorimotor cortices. MEG exhibited a higher

signal-to-noise ratio, with its power values higher than EEG. The

subject-averaged, wide-band FC maps also indicated similarities

between the modalities, in which the connections were strongest at

the parieto-occipital region. Here, EEG showed stronger connection

strengths, whereas MEG FC was more concentrated on the parietal

cortex. Likewise, M/EEG PSDs averaged across subjects and parcels

displayed comparable spectral distributions with a prominent unimo-

dal peak in the alpha frequency band. However, their aperiodic activi-

ties diverged, as EEG showed a steeper decay following a 1/f pattern.

All these trends were also evident in the M/EEG data that had been

reconstructed using a standard brain structural image instead of

subject-specific sMRI images (Figure A3).

To ascertain whether the static RSNs derived from M/EEG and

their overall comparability are reproducible, we extracted the same

static PSDs, power maps, and FC networks from the EEG and MEG

datasets divided into halves. We then assessed their reproducibility

within and across the modalities (Figure 3). A qualitative comparison

illustrated that static spectral, power, and connectivity distributions

remained consistent within each modality. In both EEG and MEG,

each half highlighted identical brain regions with high power and con-

nectivity values, while also demonstrating similar PSD shapes

(Figure 3a,b). Across the modalities, any comparisons of two halves

mirrored the observations from the full dataset. That is, MEG showed

higher power than EEG, whereas EEG exhibited stronger FC than

MEG, with MEG accentuating the parietal cortex relatively more. To

this extent, the comparability of the static RSN features was higher

within each modality than between the two modalities.

In summary, EEG and MEG demonstrated qualitative correspon-

dence across all static network features, despite some discrepancies.

This comparability was noted in the data that were reconstructed

using a standard brain structural image as well, with which we could

observe the same discrepancies between the two modalities. These

network features also displayed a good level of reproducibility, both

within and across the modalities, when qualitatively contrasted.

3.1.2 | MEG and EEG reveal comparable age effects
in static network features

To investigate whether MEG and EEG provide equally meaningful

static network descriptions, we examined age-related effects captured

by their static RSN features. Both modalities demonstrated compara-

ble age-related effects in PSDs, identifying statistically significant dif-

ferences between the age groups across the delta, theta, and beta

bands (Figure 4a,f). However, slight discrepancies were noted at

higher frequencies (30–45 Hz). The topographic maps highlight the

alpha peak PSD differences, the power differences in lower frequen-

cies, and the power differences in the beta band; these topographical
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patterns additionally showed qualitative similarities between the two

modalities.

Further analysis of age-related effects in narrow-band (delta,

theta, alpha, beta) power spatial maps indicated that the general trend

of power differences between the age groups (whether young partici-

pants exhibited higher power than old participants, or vice versa) was

statistically significant across two modalities (Figure 4b–e,g–j; right).

Nonetheless, their specific spatial distributions still demonstrated

slight discrepancies. In the delta power map, the young cohort

exhibited higher power in the frontal and temporal cortices, and spe-

cifically in the sensorimotor region in MEG (Figure 4b,g). In the theta

power map, the young group showed increased power in the frontal

and sensorimotor regions, with only EEG displaying higher power in

the parietal region (Figure 4c,h). Significant age-related alpha effects

were exclusively observed in MEG within the occipital cortex,

whereas EEG did not identify any regions with notable age effects

(Figure 4d,i). In the beta power map, age-related effects were more

prominent in MEG, which identified effects in the parietal, frontal, and

F IGURE 2 Qualitative comparison of static resting-state networks between EEG and MEG. (a) Brain surface map of static power for each
brain parcel, calculated by first averaging PSDs across the frequency range of 1.5–20 Hz at the individual level and then across all subjects (left).
On the top right, an FC network of static AEC averaged across subjects, with only the top 5% of correlation strengths shown for better
visualisation. AEC values were calculated on envelopes obtained from subject-wise parcel time courses, band-pass filtered from 1.5 to 20 Hz. On
the bottom right, the static PSD averaged across both brain parcels and subjects, with standard errors across parcels indicated by grey shading.
(b) The subject-averaged static power map, functional connectivity network, and PSD generated using the MEG data following the same analyses
as in (a).
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sensorimotor cortices, albeit both modalities recognised effects in the

parietal region (Figure 4e,j). The general trend of between-group static

power differences was more evident in the qualitative representation

of age effects (Figure 4b–e,g–j; left).

The observed age-related effects remained consistent in the M/EEG

data that were reconstructed using a standard brain structural image

(Figure A4). However, notable differences were identified, including

minor deviations in spatial patterns within the parietal and temporal cor-

tical regions in the EEG beta power map (Figure A4e), along with the

absence of age-related effects in the MEG alpha power map (Figure A4i).

In summary, although some of the spatial details of the

age-related effects varied, MEG and EEG often captured group-level

differences of a similar nature. Their comparability persisted even

when the data were reconstructed with a standard brain structural

image. Nonetheless, there was a tendency for MEG to be slightly

more sensitive to age-related changes.

3.2 | Dynamic analysis

3.2.1 | Dynamic RSN features are qualitatively
similar across MEG and EEG

Following the static analysis, we examined how dynamic RSN features

compared between the two modalities. Figure 5 presents the subject-

averaged PSDs and wide-band (1.5–20 Hz) power map and FC

F IGURE 3 Resting-state network reproducibility of static network features within and across modalities. (a) The subject-averaged, wide-band
(1.5–20 Hz) power maps and FC networks, along with the PSDs averaged across both brain parcels and subjects, computed from the first half
(top panel) and the second half of the resting-state EEG data (bottom panel). Each half comprises data from 48 subjects. The power maps depict
lateral surfaces at the top and medial surfaces at the bottom, and the FC networks show only the top 5% of correlation strengths. For the PSDs,

standard errors across parcels are indicated by grey shading. (b) The same analysis as in (a) is conducted using the MEG data.
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F IGURE 4 EEG and MEG reveal comparable age-related effects in static network features. (a) The between-group PSD difference (red dotted
line), averaged over parcels and subjects, is depicted alongside green lines denoting the subject-averaged PSD differences for each parcel (the
inset in the top-right corner indicates the shade of green used for each brain parcel) of the EEG data. Frequency ranges with significant PSD
differences (p < .05; horizontal red bars) are identified via a cluster permutation test on parcel-averaged PSDs of the two age groups. Additionally,
the top topographical maps show the peak/trough group-level PSD differences found in the alpha frequency band. The bottom topographies
show group-level PSD differences integrated separately across the lower (1.5–8 Hz) and beta (13–20 Hz) frequency bands, represented by the
grey shading. (b) On the left, a brain surface map illustrating delta band power differences between the old and young groups is plotted for the
EEG data, with lateral surfaces at the top and medial surfaces at the bottom. On the right, the max-t permutation test (p < .05; Bonferroni-
corrected, n = 4 frequency bands) was applied to the power map to highlight the age-related effects, with significant parcels accentuated. Red
and blue colours indicate higher power in old and young participants, respectively, and non-significant findings are labelled as n.s. The same
analysis as in (b) is shown for the (c) theta, (d) alpha, and (e) beta band EEG power maps. (f) The same analysis as described in (a) is shown for the
MEG data. (g–j) The same analysis as described in (b) is shown for the delta, theta, alpha, and beta band power differences, respectively, using the
MEG data.
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network for each state, demonstrating their alignment between EEG

and MEG. Notably, the spatial patterns of power distributions showed

a marked resemblance between the modalities. Nonetheless, distinc-

tions arose particularly in states 2 (the visual network) and 6 (the sen-

sorimotor network), where there was relatively less correspondence.

These states exhibited divergent areas of stronger activation or deac-

tivation between the modalities; for instance, state 2 displayed ele-

vated occipital activity in EEG, while more pronounced deactivation in

non-occipital areas was observed with MEG.

Similarly, the state-specific FC networks and PSDs largely main-

tained a high degree of comparability between EEG and MEG, along-

side more detailed discrepancies. Such discrepancies were most

pronounced in states 1 (a putative anterior default mode network)

and 2 (the visual network), in which the top 5% coherence values and

PSDs highlighted different brain regions and spectral patterns, respec-

tively, when visualised relative to the average values across all states.

The comparability of dynamic network features across the two

modalities was reflected in the MEG and EEG RSNs derived from the

F IGURE 5 Qualitative comparison of dynamic resting-state networks between EEG and MEG. (a) Each box shows the subject-averaged
power map (left), FC network (middle), and parcel-averaged PSD (right) of each HMM state for 96 EEG subjects. Each state is considered as a
distinct RSN. The power maps show lateral surfaces at the top and medial surfaces at the bottom. The FC networks illustrate connections with
the top 5% coherence values (irrespective of sign). The shaded areas of the PSDs represent the standard error of the mean across the parcels. The
power maps, FC networks, and PSDs are visualised relative to their average across all states. (b) The plots follow the same format as (a), showing
the RSNs computed from 96 MEG subjects.
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F IGURE 6 Resting-state network reproducibility of dynamic network features within and across modalities. (a) The wide-band (1.5–20 Hz)
power maps for resting-state EEG data, averaged across subjects, are shown for the first half of the dataset (top) and the second half of the
dataset (bottom), with each half comprising data from 48 subjects. These maps show lateral surfaces at the top and medial surfaces at the bottom,
visualised relative to their average across all states. (b) The same analysis as in (a) is conducted using the MEG data. (c) For each state, the
similarities between inferred covariance matrices within and across modalities are measured as RV coefficients (higher value indicates more
reproducible). (d) Similarities between inferred transition probability matrices within and across modalities are measured as the Jensen–Shannon
(JS) distances and depicted in bar graphs (lower value indicates more reproducible). The statistical difference between JS distances within EEG
and MEG was tested using the Wilcoxon rank-sum test (U = 9.053, p = 1.394e-19). Significance levels are indicated by ***: p < .05, **: p < .01,
*: p < .001.
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data reconstructed using a standard brain structural image (Figure A5).

Importantly, the discrepancies previously observed persisted, with

states 2 and 6 displaying reduced correspondence in power maps and

states 1 and 2 showing lesser alignment in FC networks and PSDs.

A possible source of the between-modality discrepancies might

stem from variability among subjects and between different model

runs. To ensure that the overall consistency of the dynamic RSNs

derived from EEG and MEG are replicable despite these minor differ-

ences, we evaluated the reproducibility of HMM states within and

across the modalities (Figure 6). We started by comparing the state-

specific power maps generated from the EEG and MEG datasets split

into two halves. Our qualitative comparison revealed that spatial

power distributions remained consistent within each modality

(Figure 6a,b). There was also a notable similarity in power maps across

the modalities, with state 6 being the sole exception to this trend.

The reproducibility of HMM states was also measured with respect

to the inferred HMM parameters. In particular, we computed the RV

coefficients, a generalisation of the squared Pearson correlation coeffi-

cient, between the covariance matrices of two split-half M/EEG data-

sets (Figure 6c). As anticipated, RV coefficients for comparisons within

the same modality were typically higher (more reproducible) than those

for comparisons across the modalities. For all states except state 6, RV

coefficients exceeded 0.65 for any given comparison, although the vari-

ability of this measure over different types of comparisons was rela-

tively higher for states 1 (a putative anterior default mode network)

and 6 (the sensorimotor network). Notably, RVs within MEG were gen-

erally higher than those within EEG.

Subsequently, we quantified the difference between transition

probability matrices of two split-half datasets as the JS distance

(Figure 6d). This distance was lower (more reproducible) for the com-

parison within MEG than that within EEG or across the modalities. In

particular, the JS distances within MEG were significantly smaller than

those within EEG. The comparisons across the modalities had median

JS distances similar to the median value within EEG, although the lat-

ter exhibited a larger variance, including relatively lower distances.

Such similarity partly serves as additional evidence that EEG and MEG

RSNs are comparable as they pertain to inferred state transition

probabilities.

In summary, EEG and MEG were broadly similar across the

dynamic network features, while also showing some discrepancies.

Their comparability, as well as discrepancies, persisted when the data

were reconstructed using a standard brain structural image. Further-

more, we measured the reproducibility of these network features, as

well as of the HMM parameters, both within and across the modali-

ties. This showed that state 6 (the sensorimotor network) was the

least reproducible and that EEG was less reproducible than MEG.

3.2.2 | MEG and EEG reveal comparable age effects
in dynamic network features

The age-related effects in dynamic PSDs and power maps derived

from MEG and EEG are illustrated in Figure 7. Note that for each

dynamic measure we compute the “dynamic contribution to the

state-specific” measure, resulting in any dynamic effects above

the static effects. For example, the power in a state in a particular fre-

quency band is the power in that state in addition to the static power

in that frequency band.

For both modalities, the age-related effects for the dynamic PSDs

(Figure 7a,c) broadly appeared in the same frequency bands as for the

static PSDs. Specifically, (Figure 7a,c) shows significant spectral differ-

ences between the age groups in the delta and theta bands across all

states for both MEG and EEG. However, consistency in these differ-

ences was less evident in the beta band and higher frequencies. While

states 4, 5, and 6 exhibited overlapping effects in these frequencies,

states 1, 2, and 3 did not. In state-specific, wide-band (1.5–20 Hz)

power maps, all states except state 1 displayed roughly equivalent

age-related effects, with the young cohort showing higher power

compared to the old group (Figure 7b,d). However, states 2, 4, and

6 presented overlapping patterns across brain regions between the

two modalities, whereas states 3 and 5 revealed significant power dif-

ferences in regions that varied across the modalities.

The observed age-related effects remained consistent in the

M/EEG data that were reconstructed using a standard brain structural

image without subject sMRI images, although to a lesser degree com-

pared to the static analysis (Figure A6). In particular, the age effects in

higher frequencies altered in the PSDs of EEG states 2 and

4 (Figure A6a). The differences were more pronounced on

state-specific power maps. In general, significant power spatial distri-

butions exhibited different patterns when a standard structural image

was used. While EEG and MEG state 1 highlighted significant age-

related effects in the occipital and parietal cortices, respectively, sig-

nificance in MEG state 6 diminished under this condition

(Figure A6b,d).

In summary, MEG and EEG demonstrated broadly comparable

age-related effects in dynamic network features (specifically, the

dynamic effects above the static effects), albeit to a lesser extent

compared to static features. This comparability persisted when the

data were reconstructed using a standard brain structural image,

although it was not maintained at a level similar to the static analysis.

3.3 | Age group classification task

Our comparative analysis of how MEG and EEG capture age-related

effects in static and dynamic RSN features showed that both modali-

ties offer broadly comparable network descriptions. To extend this

analysis further in a quantitative manner, we aimed to estimate the

predictive power of these network features in accurately classifying

subjects into distinct age groups. Utilising three distinct sets of input

features—static, dynamic, and a combination of both—we employed a

logistic regression classifier with an L2 regularisation penalty (see

Section 2.7).

We evaluated prediction scores against test datasets across

10 repeated classification tasks, with Figure 8 illustrating the resulting

accuracies in age prediction. Both modalities showed predictions that
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exceeded what would be expected by random chance alone

(i.e., 50%); the mean prediction accuracies, averaged across 10 repeti-

tions, were significantly higher for MEG than EEG when employing

static and dynamic input features (Figure 8a). Although this statistical

difference was not observed with combined features, there was still a

clear trend towards better prediction for MEG compared to EEG.

Next, we conducted the same analysis using the data that were

reconstructed without subject-specific sMRI images. For EEG, the

prediction scores significantly decreased when using dynamic and

combined features, while a significant decrease was observed with

static features for MEG (Figure 8b,c). Irrespective of statistical signifi-

cance, however, all three types of input features exhibited lower

prediction scores for both EEG and MEG when only the standard MNI

template was provided for reconstruction.

4 | DISCUSSION

Using the MEG RSNs from the Cam-CAN dataset as a benchmark for

evaluating brain networks of fast oscillatory activity, we investigated

EEG-derived RSNs to ascertain if both modalities can yield meaningful

network descriptions and establish how comparable they are to one

another. The results indicate qualitative and quantitative comparabil-

ity between MEG and EEG in representing functional brain networks

F IGURE 7 EEG and MEG reveal comparable age-related effects in dynamic network features. (a) The state-specific, dynamic PSDs of the
EEG data averaged across grouped subjects and parcels, depicted for old (dotted) and young (solid) participants. For each HMM state, a cluster
permutation test is conducted on parcel-averaged PSDs to detect age-related dynamic effects, with frequencies exhibiting statistical significance
(p < .05; Bonferroni-corrected, n = 6 states) highlighted in red. An inset at the top-right corner displays the t-statistics, signifying the magnitude
of age-related effect sizes between the groups. () The state-specific power maps with significant between-group differences for the EEG data.
These differences are validated through max-t permutation tests (p < .05; Bonferroni-corrected, n = 6 states), with significant parcels
accentuated. Red and blue colours indicate higher power in old and young participants, respectively, and non-significant findings are labelled as
n.s. (c) The same analysis as in (a) performed on the MEG data, marking significant age-related dynamic effects in state-specific PSDs. (d) The
same analysis as in (b) performed on the MEG data, illustrating significant age-related dynamic effects in state-specific wide-band power maps.
Note that in all cases we plot the “dynamic contribution to the state-specific” feature, resulting in dynamic effects that are above the static
effects.
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and suggest some advantages of HMM over traditional network infer-

ence methods for EEG (e.g., microstates (Michel & Koenig, 2018), slid-

ing window method (de Pasquale et al., 2010)). Our findings

highlighted several key points.

First, consistent with previous research (Coquelet et al., 2020;

Siems et al., 2016), we found that MEG and EEG exhibit analogous

static RSN features (Figure 2), which were reproducible within and

across the MEG and EEG datasets (Figure 3). Age-related effects in

static PSDs and power maps also proved comparable across the

modalities. Nonetheless, there was a tendency for MEG to be more

sensitive to age-related changes than EEG (Figure 4). These network

descriptions and age effects persisted even when the data were

reconstructed using a standard brain structural image (Figures A3

and A4).

Second, MEG and EEG demonstrated broadly comparable

dynamic RSN features (Figure 5), with age-related effects in state-

specific PSDs and power maps displaying marked similarity, albeit to a

lesser degree compared to the static RSNs (Figure 7). These network

features and age-related effects remained largely consistent when a

standard brain structural image was used to reconstruct the data

(i.e., when subject-specific sMRI images were not available)

(Figures A5 and A6). We also used a split-half approach to quantita-

tively measure the extent to which the dynamic network features

were reproducible within and across the MEG and EEG datasets

(Figure 6). Overall, this approach revealed a good level of reproducibil-

ity, with state 6 (the sensorimotor network) found to be the least

reproducible. We deemed a network description reproducible if the

network features qualitatively resembled one another across all states,

or at least the vast majority of states. We found that EEG was gener-

ally less reproducible than MEG. In sum, the similarity of dynamic

RSNs across the modalities was substantial when contrasted with a

F IGURE 8 Predictive accuracy in age group classification using
EEG and MEG resting-state network features. (a) Mean prediction
scores for three different RSN feature types derived from the EEG
(purple) and MEG (pink) data across 10 repeated runs of classification
tasks. The bars denote mean scores, with error bars reflecting
standard deviations. A dotted line represents the score expected by
random chance. Features were obtained from data reconstructed
using individual sMRI images. Prediction scores were evaluated
against random chance with a one-sample independent t test (for
EEG, static: T = 19.01, p = 7.085e-9; dynamic: T = 24.81,
p = 6.736e-10; combined: T = 30.11, p = 1.203e-10; for MEG, static:
T = 44.05, p = 4.003e-12; dynamic: T = 26.29, p = 4.027e-10;
combined: T = 28.71, p = 1.840e-10) and compared between EEG
and MEG using a two-sample independent t test (static: T = �18.47,
p = 3.801e-13; dynamic: T = �10.53, p = 4.016e-9) and a Welch's
t test (combined: T = �12.99, p = 8.974e-9). (b) Mean prediction
scores for three distinct RSN feature types derived from the EEG data
that were source reconstructed with (grey) and without (orange)
individual sMRI images. Bar and error bar representations match (a).
Differences due to sMRI image use were assessed with a two-sample
independent t test (dynamic: T = 3.156, p = 5.471e-3; combined:
T = 4.076, p = 7.088e-4). (c) The same analysis as in (b) using the

MEG data (static: T = 3.320, p = 3.807e-3). Significance levels are
indicated by */♦: <0.05, **/♦♦: <0.01, ***/♦♦♦: <0.001 (before
Bonferroni-corrected, n=3 features), with non-significant findings
unmarked.
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previous sliding-window-based analysis (Coquelet et al., 2020) that

reported discordant dynamic RSN FC between MEG and EEG.

Finally, we confirmed that both MEG and EEG can provide mean-

ingful static and dynamic network descriptions by testing the efficacy

of M/EEG network features in predicting age groups. Although EEG

reported lower test accuracy than MEG, the performance scores of

both modalities were above random chance expectations (Figure 8a).

However, one caveat is that, while MEG outperformed EEG in the age

class prediction task, differences between the two datasets may not

solely reflect differences between EEG and MEG. Other factors, such

as age range and participant heterogeneity, may have also influenced

the results.

Interestingly, the predictive power was similar for the static and

dynamic RSN features and did not significantly improve when they

were combined. This lack of improvement suggests that, for the sim-

ple task of classifying binary age groups with a logistic classifier, using

either static or dynamic network descriptions suffices. The complex

analysis combining static and dynamic features does not appear to be

beneficial for this specific task, possibly due to the overfitting of the

data. In addition, these test accuracies varied across different brain

spaces. For EEG, performance metrics for dynamic and combined

input features showed significant variation depending on whether the

data were reconstructed with subject-specific sMRI images or

the standard MNI template (Figure 8b). For MEG, significant variation

was observed in performance for static input features (Figure 8c).

Although not always statistically significant, performance metrics for

all three input feature types decreased for both EEG and MEG when

we used the standard MNI template.

4.1 | Basis set of EEG RSNs

As noted at the outset of this article, the current study provides a

basis set of RSNs derived from the EEG LEMON dataset, alongside

their counterparts from the MEG Cam-CAN data. This basis set was

constructed using medium-density EEG, thereby rendering it as data

applicable for subsequent studies employing similar EEG systems. In

particular, we offer scripts designed for the preprocessing, source

reconstruction, and analysis of M/EEG data, as well as the inferred

model parameters of the optimal HMM runs (e.g., state covariances,

transition probabilities, time course of state probabilities). These data

and resources are made publicly accessible, with detailed guidelines

for software installation and data downloading available in the GitHub

repository (see Section 2.9).

The basis sets of static and dynamic EEG RSNs are illustrated in

Figures 2 and 5, respectively. The designation of these EEG networks

as a basis set is justified for several reasons. Notably, in both static

and dynamic analyses, EEG RSNs not only resembled those derived

from the MEG data but also demonstrated age-related effects compa-

rable across the two modalities. In addition, their network features

were reproducible within and across the modalities, although with the

exception of state 6 in the dynamic RSNs. Finally, akin to MEG, net-

work descriptions in the EEG basis set demonstrated robust

performance in age prediction, significantly surpassing that of random

chance.

Despite the comparability between EEG and MEG, it is important

to acknowledge that MEG demonstrated better reproducibility,

enhanced predictive accuracy, and greater sensitivity to age-related

effects compared to EEG. This discrepancy is arguably anticipated,

given the higher sensor count of MEG and consequently its superior

spatial resolution. Previous studies (Coquelet et al., 2020; Knyazev

et al., 2016; Liu et al., 2017) suggest that EEG datasets with a greater

number of sensors can also achieve a level of comparability with MEG

data. Nonetheless, it remains to be elucidated how EEG data, varying

in sensor count relative to the EEG LEMON dataset, compares with

MEG, especially in terms of dynamic RSNs as derived from state-of-

the-art methodologies. Among several potential applications, this

basis set could be used for investigating RSNs in high- and low-

density EEG systems, developing methods for effectively combining

M/EEG with fMRI, and comparing basis sets of RSNs inferred from

various modalities such as optically pumped magnetometers (OPM).

4.2 | Limitations

One of the main limitations in our study was the relatively small sam-

ple size (n = 96 subjects). This limitation meant that while subjects

across the two datasets could be age-matched, further matching

based on sex or Mini-Mental State Examination scores was not feasi-

ble. Likewise, demographic attributes, recording sites, and other cog-

nitive or physiological states that have not matched may introduced

unaccounted variance into our effects of interest. In the context of

our classification task, the small sample size restricted us to a binary

categorisation of age groups (young vs. old), as it was difficult to sub-

divide our sample suitably under the k-fold cross-validation frame-

work. Because ages were categorised in intervals within the LEMON

dataset, predicting numerical, continuous age values had to be pre-

cluded from the outset. Other limitations included the use of random

subsampling during the age-matching process, which may have

brought additional subject variability to our comparison between

LEMON and Cam-CAN.

It is also worth noting that the different data acquisition methods

for EEG and MEG may have contributed to certain disparities in their

RSN descriptions and associated age effects. The EEG data were

recorded in 1-min blocks alternating between eyes-closed and eyes-open

conditions, while the MEG data were recorded with participants keeping

their eyes closed throughout the session. Although the EEG analysis was

limited to the eyes-closed periods, the intermittent eye openings might

have altered the brain state during EEG acquisition (e.g., by forcing par-

ticipants to be more alert on average). On the contrary, the brain state in

the second half of the MEG session may differ from the first half due to

potential drowsiness. These differences in data acquisition likely

impacted the underlying brain dynamics in EEG and MEG, leading to

some disparities in the effects observed in the two modalities.

Another notable aspect of our preprocessing pipeline is that we

used a parcellation atlas with 38 anatomical regions for reconstructing
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both EEG and MEG, which has previously been shown to work effec-

tively on MEG data (Colclough et al., 2015). However, it is plausible

that using fewer or coarser parcels could enhance the comparability

between EEG and MEG. Even in this case, some differences could be

preserved, for example, if localised age effects align with the adopted

parcellation. Similarly, altering parcel shapes could also possibly

increase comparability between the modalities if the parcel borders

are defined in such a way that differences between EEG and MEG are

reduced. Exploring the effects of different parcellation atlases on the

EEG and MEG RSNs would be an intriguing direction for future

research.

4.3 | Outlooks and future works

Previous research has indicated marginal comparability between MEG

and EEG in capturing the temporal dynamics of brain networks

(Coquelet et al., 2020). They proposed that the reasons for this poor

correspondence are primarily twofold. From a physiological stand-

point, it was surmised that MEG and EEG detect distinct

components of transient neural activities, particularly in fast oscilla-

tory fluctuations above 1 Hz, originating from different neural popula-

tions responsible for generating magnetic and electric fields. From a

methodological perspective, it was acknowledged that the sliding-

window approach, compounded by the lack of spatial leakage correc-

tion, could result in large statistical errors (Hutchison et al., 2013).

Hence, the estimation of dynamic RSN FC at shorter timescales may

not benefit from smoothing effects typically associated with static

analysis techniques, such as low-pass filtering or amplitude envelope

analysis.

Although we found the methodological limitations plausible, our

findings did not support the physiological explanation. When we

applied the TDE-HMM (Vidaurre, Hunt, et al., 2018), a more advanced

dynamic modelling technique validated across various MEG datasets,

we discovered a previously unobserved similarity between the modali-

ties in both static and dynamic RSNs, even with a lower-dimensional

61-channel EEG system and a 38 parcellated brain regions. Conse-

quently, whereas it was believed that MEG and EEG produce comple-

mentary views on the dynamic functional network organisations of

the human brain, our results indicate that both modalities can identify

the same network profiles, at least in the resting state.

Therefore, instead of assuming they measure distinct aspects of

brain functionality (Cichy & Pantazis, 2017; Mahmutoglu et al., 2022),

our data suggest that the same functional networks underpin brain

activity, irrespective of the modalities. This indicates that the RSNs

may be less a characteristic of the specific measurement modality and

more a neural substrate correlated with cognition and behaviours that

is common across neuroimaging modalities. It is conceivable that dif-

ferent modalities may highlight specific aspects of RSNs, as evidenced

by statistical testing on age effects; however, the overarching spatial

patterns remained consistent. With the application of robust statisti-

cal methods capable of enhancing spatiotemporal precision

(McFadyen & Dolan, 2023), such as dynamic network modes (Gohil

et al., 2022), we may be able to see more clearly the same RSNs in

both MEG and EEG.

Our results thus support the notion that previously known prop-

erties of MEG and fMRI RSNs may translate into EEG. Furthermore,

while both MEG and EEG provide unprecedented temporal resolution

over fMRI, their comparability allow us to consider prioritising EEG in

future functional brain network studies, given its cheap cost and

broader accessibility. If high-density EEG systems are leveraged in

conjunction with advanced statistical modelling methodologies, we

anticipate an even greater alignment in the dynamic network features

identifiable across these modalities.

To this extent, future works should aim to verify whether cogni-

tive, behavioural, and clinical phenotypes associated with MEG and

fMRI RSNs can also be identified in EEG. Given that dynamic RSN

phenotypes of neuropsychiatric disorders have predominantly been

reported in fMRI and MEG studies, it would be crucial to explore

dynamic EEG RSNs in this regard. The established correspondence

between MEG and fMRI RSNs (Brookes et al., 2011) implies that bio-

markers identified through these modalities could potentially be

detected within EEG data. An additional avenue of research could

focus on the use of simultaneous M/EEG recordings to more accu-

rately assess how dynamic RSN features and the age-related effects

in them vary between modalities. This approach would offer insights

into the efficacy and necessity of multimodal electrophysiological

techniques. Furthermore, examining whether the comparability of

RSNs across MEG, EEG, and fMRI extends to other measurement

devices, such as wearable functional near-infrared spectroscopy

(Ferrari & Quaresima, 2012) or OPM-based MEG systems (Brookes

et al., 2022), would substantiate the validity of our findings.

5 | CONCLUSION

In this article, we demonstrated that MEG and EEG produce compara-

ble static and dynamic network descriptions, which were shown to be

meaningful in highlighting age-related effects and predicting age

groups. MEG, however, was more reproducible and sensitive in

detecting age-related effects than EEG. This comparability and con-

comitant discrepancies between the modalities were also observed

when the datasets were reconstructed using a standard brain struc-

tural image and without requiring subject sMRI images, albeit to a

lesser degree. Our results suggest that MEG and EEG share the same

functional brain networks, likely paralleling those detected by other

modalities like fMRI.
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