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Abstract 

Background Dementia is a neurological syndrome marked by cognitive decline. Alzheimer’s disease (AD) and fron-
totemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns. Early 
and accurate diagnosis of dementia cases (AD and FTD) is crucial for effective medical care, as both conditions have 
similar early-symptoms. EEG, a non-invasive tool for recording brain activity, has shown potential in distinguishing AD 
from FTD and mild cognitive impairment (MCI).

Methods This study aims to develop a deep learning-based classification system for dementia by analyzing EEG 
derived scout time-series signals from deep brain regions, specifically the hippocampus, amygdala, and thalamus. 
Scout time series extracted via the standardized low-resolution brain electromagnetic tomography (sLORETA) 
technique are utilized. The time series is converted to image representations using continuous wavelet transform 
(CWT) and fed as input to deep learning models. Two high-density EEG datasets are utilized to validate the effi-
cacy of the proposed method: the online BrainLat dataset (128 channels, comprising 16 AD, 13 FTD, and 19 healthy 
controls (HC)) and the in-house IITD-AIIA dataset (64 channels, including subjects with 10 AD, 9 MCI, and 8 HC). 
Different classification strategies and classifier combinations have been utilized for the accurate mapping of classes 
in both data sets.

Results The best results were achieved using a product of probabilities from classifiers for left and right subcortical 
regions in conjunction with the DenseNet model architecture. It yield accuracies of 94.17% and 77.72% on the Brain-
Lat and IITD-AIIA datasets, respectively.

Conclusions The results highlight that the image representation-based deep learning approach has the potential 
to differentiate various stages of dementia. It pave the way for more accurate and early diagnosis, which is crucial 
for the effective treatment and management of debilitating conditions.
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Introduction
Background & related work
Dementia represents a neurological syndrome impairing 
cognitive functioning, behaviour, and daily activities [1]. 
It leads to nerve cell degeneration and disrupted brain 
communication [2]. The number of people with dementia 
is expected to double worldwide by 2050 [3], with Alzhei-
mer’s disease (AD) being the most prevalent form, signif-
icantly contributing to this increase. Despite progress in 
diagnosing and managing AD, no definitive cure for AD 
exists. Thus, early or timely detection is a global research 
priority [4].

Mild cognitive impairment (MCI) is an intermedi-
ate stage between healthy ageing and dementia, with a 
3–15% annual conversion rate to AD compared to 1–2% 
in the general population [5]. Frontotemporal dementia 
(FTD), the second most common form, is characterized 
by changes in language, behaviour, executive function, 
and motor symptoms [6]. AD and FTD present similar 
early symptoms, often leading to misdiagnosis and com-
plicating treatment due to their distinct progression pat-
terns and causes [7].

Diagnostic methods face challenges due to a lack of 
optimal behavioural tests and the high cost of cerebrospi-
nal fluid (CSF) and blood marker tests [8]. Screening tools 
such as the Clinical Dementia Rating (CDR) [9], Mini-
Mental State Exam (MMSE) [10], Montreal Cognitive 
Assessment (MoCA) [11], and Addenbrooke’s Cognitive 
Examination III (ACE-III) [12] are useful but have limita-
tions. These limitations include time-consuming admin-
istration, reliance on subjective judgments, influence by 
education level and premorbid intelligence, and less sen-
sitivity at early stages [12]. There is a growing focus on 
identifying non-invasive brain markers to detect disease 
pathology before behavioural symptoms appear [13].

Mainstream early diagnosis relies on pathological 
biomarkers like β-Amyloid and tau Positron Emission 
Tomography (PET) neuroimaging [14]. AD stages are 
primarily associated with β-amyloid plaques and tau 
tangles [15], while FTD involves tau or TDP-43 protein 
abnormalities [16]. Imaging methods like Computed 
Tomography (CT), PET [14], and functional Magnetic 
Resonance Imaging (fMRI) have been used in literature, 
with fMRI showing higher sensitivity in some cases [17]. 
Machine learning and MRI-based differentiation [18–21] 
offer high accuracy in distinguishing these conditions 
[22]. However, the practical utility of these neuroimag-
ing methods is restricted by high infrastructure costs, 
less favourability in terms of patient tolerance, and brain-
computer interface applications.

Electroencephalogram (EEG) has gained significant 
attention as a noninvasive tool to analyze brain activity 
[23, 24]. It has proven reliable in distinguishing dementia 

patients from controls [25, 26]. The suitability of EEG for 
repeated studies and patient monitoring makes it useful 
in early diagnosis and continuous tracking of AD. EEG 
detects changes in frequency bands, each corresponding 
to different functional brain alterations. These include δ 
(0.5–4 Hz) for slow activity, θ (4–8 Hz) for sleep-wake 
transitions, α (8–12 Hz) for resting states, β (12–30 Hz) 
for attention, and γ (above 30 Hz) for complex cognitive 
processes [27, 28]. This capability aids in defining the 
neurophysiological profile of AD stages and differentiat-
ing it from FTD [29, 30].

However, artifacts from physiological and external 
sources can obscure or distort crucial frequency bands 
of EEG signals. This affects neuronal information clar-
ity and integrity. Advancements in signal processing 
and the use of Machine Learning tools have improved 
the ability of EEG to differentiate AD from other condi-
tions [26, 31]. These improvements enhance classifica-
tion accuracy and artifact removal. These tools may also 
aid in automation and the discovery of new neurophysi-
ological markers [32].

Previous research on differentiating AD from FTD [22, 
29–31, 33] and AD from MCI [26, 27, 35–37] has pri-
marily utilized EEG features such as subbands power, 
Global Field Power (GFP), spectral ratios, and connectiv-
ity features, as detailed in Table 1. Despite these insights, 
diagnosing dementia remains challenging due to the 
extensive signal analysis required. Effective diagnosis 
requires a combination of complex features, including 
time-domain, frequency-domain, and connectivity met-
rics. As may be noted from Table 1, the current studies 
have primarily targeted sensor information or variations 
in cortical regions. However, deep brain regions (sub-
cortical regions), especially the hippocampus, are cru-
cial for accurate AD and FTD classification due to their 
early involvement in disease progression [38, 39]. AD 
often begins with neurodegeneration in subcortical 
areas like the hippocampus before affecting the cerebral 
cortex [40]. This early involvement makes deep brain 
regions essential for early diagnosis and precise differen-
tiation between AD and FTD. Detecting changes in these 
regions can significantly enhance classification accuracy 
and provide earlier diagnostic insights [39, 41]. Addition-
ally, it has been established that subcortical signals can 
be detected using surface EEG [42]. Motivated by these, 
the current study focuses on utilizing time-series signals 
from deep brain regions, specifically the hippocampus, 
amygdala, and thalamus for Dementia classification.

Objectives and contributions
In this work, an image representation-based frame-
work has been presented for the classification [43] of 
three stages of dementia on two different high-density 
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EEG datasets. In the online dataset, the 3-class classi-
fication task involves HC and subjects with FTD and 
AD dementia. The framework has additionally, been 
validated for in-house collected EEG dataset compris-
ing of subjects with MCI, AD, and HC. The pipeline 
starts with the extraction of the scout time series cor-
responding to the left and right regions of the thala-
mus, hippocampus, and amygdala, using the sLORETA 
technique. Subsequently, the time series epochs are 
converted to image representation using a continuous 
wavelet transform. By utilizing the multi-resolution 
CWT-based image representation, the time-frequency 
maps of signals corresponding to the three categories 
are efficiently learned. In order to learn this mapping, 
the images corresponding to the left and right regions 
are fed to standard deep learning model architectures 
from the computer vision domain such as Xception [44], 
ResNet [45], InceptionResNet [46], MobileNet [47], 
NasNetMobile [48], EfficientNet [49], and DenseNet 
[50]. For classifying the corresponding images, differ-
ent classification strategies have been adopted. First, 
the models from the left and right regions are used in 

isolation for prediction. Subsequently, the sum and 
product of the posterior probabilities are utilized for the 
classification task. Additionally, two fusion techniques, 
namely, early fusion and tensor fusion networks, have 
also been explored for the purpose of dementia classifi-
cation on both datasets.

The remainder of the paper is organized as follows: 
“Materials and methods”  section provides the descrip-
tion of the datasets utilized in this study (“Dataset 
description”  section), the scout time series extraction 
process (“Scout time series extraction”  section), prepa-
ration of image data (“Image data preparation”  section), 
and the adopted classification strategy (“Classification 
strategy”  section). Experimental details and results are 
presented in “Experiments and results”  section, and 
“Conclusions” section concludes the paper.

Materials and methods
In this section, the datasets utilized in the study, EEG 
preprocessing steps, scout time series extraction, image 
data preparation and classification strategy have been 

Table 1 A brief description of neurodegenerative disorders classification using EEG

Approach Extracted features Cases Domain Reference Classification 
problem

Accuracy(%)

sLORETA and ROC GFP 19 FTD, 19 AD, 21 HC Source (Cortex) Nishida et al. [33] FTD/HC 85.80

AD/HC 92.8

FTD/AD 89.8

Decision Trees, Ran-
dom Forests

mean, variance, IQR, 
frequency

19 FTD, 16 AD, 19 HC Sensor (19) Miltiadous et al. [29] AD/HC 86.3

FTD/HC 78.5

DICEnet band power, coher-
ence

23 FTD, 36 AD, 29 HC Sensor (19) Miltiadous et al. [31] AD/HC 83.3

FTD/HC 74.9

Gaussian Naïve Bayes phase lock value, con-
nectivity

23 FTD, 36 AD, 29 HC Sensor (19) Si et al. [34] FTD/HC 81.1

AD/HC 86.2

FTD/AD 84.7

SVM graph 23 FTD, 36 AD, 29 HC Sensor (19) Rostamikia et al. [30] FTD/AD 87.8

AD+FTD/HC 93.5

eLORETA connectivity 75 MCI, 75 HC Source (Cortex) Babiloni et al. [35] MCI/HC 71.0

Logistic Regression spectral ratios, con-
nectivity

64 MCI, 60AD, 65 HC Sensor (32) Farina et al. [36] AD/HC 97.0

MCI/HC 77.0

AD/MCI 87.0

Logistic Regression coherence, spectral 
power

53 MCI, 26 AD, 55 HC Sensor (20) Meghdadi et al. [37] AD/HC 85.0

MCI/HC 60.0

Extreme Learning 
Machine

FuzzyEn, PLV 28 MCI, 21 HC Sensor (16) Su et al. [27] MCI/HC 89.8

CEEDNet EEG signals, age 417 MCI, 230 AD, 
459 HC

Sensor(19) Kim et al. [26] Dementia/MCI/AD 76.7
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elaborated. A block diagram representing the complete 
pipeline is presented in Fig. 1.

Dataset description
BrainLat dataset
The dataset utilized in this study is the section of pub-
licly available, preprocessed EEG recordings released 
by the Latin American Brain Health Institute (Brain-
Lat) [51]. The selected subset comprises five-minute 
EEG recordings from the Latin American population. 
More specifically, resting-state, eyes-closed recordings 
from 48 subjects (AD = 16; FTD = 13; HC = 19) were 
used for the experiments. The recordings were obtained 
using a 128-channel Biosemi Active II system with pin-
type active, sintered Ag-AgCl electrodes referenced to 
contralateral linked mastoids. External electrodes were 
also placed periocularly to capture blinks and eye move-
ments. Analog filters with a frequency cutoff of 0.03–100 
Hz were used to reduce noise. The EEG was monitored 
online to detect drowsiness, muscle activity, and sweat 
artefacts.

The recorded data was processed offline using EEGLab 
[52]. The first step involved in processing steps was 
average referencing of the EEG data. Subsequently, 
a bandpass filter was applied between 0.5 and 40 Hz 
using a zero-phase shift Butterworth filter of order 8. 
The data was then downsampled from 2048 to 512 Hz. 

Independent Component Analysis (ICA) was employed 
to detect artefacts induced by blinking and eye move-
ments. The components identified as artefacts were then 
removed to obtain clean EEG data. Malfunctioning chan-
nels were identified using a semiautomatic detection 
method and replaced using weighted spherical interpo-
lation. Finally, the processed EEG signals were stored for 
subsequent scout time series extraction.

IITD‑AIIA dataset
The second dataset utilized in this study consists of in-
house collected resting-state, eyes-closed EEG data 
recorded from 27 (AD = 10; MCI = 9; HC = 8) right-
handed participants aged 60–80 years. The data col-
lection protocol was approved by the Institute Ethics 
Committee, All India Institute of Ayurveda, New Delhi. 
EEG data was recorded using a 64-channel Ag/AgCl 
active electrode EEG setup (actiCHamp, Brain Products 
GmbH, Germany) with Fz as the reference electrode. 
The signals were recorded at a sampling rate of 1000 
Hz, and the 10:10 EEG electrode placement system was 
adopted. A conductive EEG gel was applied under each 
electrode to maintain resistance below 10 k � , ensuring 
a high signal-to-noise ratio. No internal filters were used 
during the recording. The diagnosis of the AD, MCI, and 
HC groups were based on the criteria of the MMSE [10] 
and MoCA screening tools [11]. Only participants whose 

Fig. 1 Block diagram depicting the proposed method. The processed EEG signals are utilized to extract scout time series from the hippocampus, 
amygdala, and thalamus using sLORETA. The signals are segmented and divided into left and right regions. Subsequently, the CWT-based images 
are fed to separate classifiers for images corresponding to left and right regions. zL and zR represent the latent representation of the classifiers, 
while ŷL and ŷR denote classifier predictions. The latent embeddings are fused using Early and Tensor Fusion, while the individual classifier outputs 
are fused using probability sum and product
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category was consistent across both scales (MMSE: AD < 
18, MCI 18–25, HC > 25; MoCA: AD < 21, MCI 21–26, 
HC > 26) were included in the analysis. HC group partici-
pants reported no history of neurological or psychiatric 
disorders. All participants provided informed consent 
prior to the study.

Preprocessing and analysis of EEG data were conducted 
using EEGLAB [52] and MATLAB 2022b. Five-minute 
segments of continuous EEG data were bandpass filtered 
between 0.5 Hz and 40 Hz using a fourth-order Butter-
worth filter to remove irrelevant noise and enhance the 
signal of interest. ICA was implemented within EEGLAB 
to visually identify and remove components associ-
ated with blinks, eye movements, and muscle artefacts. 
The preprocessed data were re-referenced to an average 
reference. Finally, the EEG data for each subject were 
downsampled to 512 Hz for further scout time series 
extraction. For participants whose EEG recordings were 
shorter than five minutes, the maximum available dura-
tion was utilized during preprocessing.

Scout time series extraction
EEG source localization aims to identify the primary 
brain current sources that generate the measured scalp 
potentials [53]. This process involves solving both the 
forward and inverse problems. The disparity between 
the number of EEG channels (128 or 64) and the num-
ber of current dipoles to be estimated (approximately 
30,020) renders the source localization problem severely 
underdetermined. Nevertheless, in literature, it has been 
reported that source localization can be reasonably accu-
rate with 64/128 channels [54].

Forward problem
The forward problem defines the relationship between 
cortical currents and scalp potentials through a lead field 
matrix [53]. This matrix models the propagation of cur-
rents through head tissues using Neumann and Dirichlet 
boundary conditions [55]. This relationship can be math-
ematically expressed as:

where V  represents the scalp potentials, A is the lead field 
matrix, S̃ denotes the cortical source currents, and Z is 
the sensor noise matrix.

The head model was computed using the Brainstorm 
toolbox, which involved a mixed model of cortical and 
deep structures [56, 57]. This model included 30,020 
vertices, combining 15,002 from the default cortex and 
15,018 from the aseg atlas. The ICBM152 MRI template 
and the aseg atlas were used to compute the head model 
for both cortical and subcortical structures, employing 
OpenMEEG with default conductivity parameters. To 

V = AS̃ + Z

focus on specific regions, an aseg subatlas was created, 
including the hippocampus (surface scout), thalamus, 
and amygdala (volume scouts).

Inverse problem
The inverse problem estimates cortical source currents S̃ 
using the lead field matrix A . The standard low-resolution 
electrical tomography (sLORETA) method was employed 
for this purpose. sLORETA assumes spatial smoothness 
and coherence among adjacent brain regions [58].

The source currents are estimated by solving the fol-
lowing optimization problem:

The solution is given by:

where H is the average reference operator, and AsLORETA 
is the inverse kernel relating the recorded scalp potentials 
V  to the cortical and subcortical source current estimate 
S̃ . A sample plot of the grand average brain activation 
for AD, FTD, and HC cases from the BrainLat dataset is 
depicted in Fig. 2.

The brain was parcellated into left and right regions 
for the hippocampus, amygdala, and thalamus using 
the created aseg subatlas. The constrained current sig-
nals were then computed for these regions. For each of 
the six regions (hippocampus, amygdala, and thalamus, 
bilaterally) in AD, FTD, and HC cases from the BrainLat 
Dataset and AD, MCI and HC from the IITD-AIIA Data-
set, the sources current signal belonging to a particular 
region are averaged out to obtain a 6-dimensional time 
series matrix denoted by Ŝ . This averaged time series 
matrix was subsequently used for image data prepara-
tion. The EEG source localization plots for BrainLat 
Dataset that depict the activation difference in the brain 
regions specifically hippocampus, thalamus, and amyg-
dala for AD, FTD, and HC cases is illustrated in Fig. 2.

Image data preparation
Signals corresponding to the left and right regions of the 
thalamus, hippocampus and amygdala were extracted 
using the aforementioned scout time series extraction 
procedure. The signals are divided into 0.25 seconds 
epochs which correspond to 128 samples. This corre-
sponds to a 128× 6 dimensional matrix Ŝ , where 6 is the 
number of signals (corresponding to the left and right 
thalamus, hippocampus and amygdala). The individual 
time series is then converted into corresponding image 
representation by using the Continuous Wavelet Trans-
form (CWT). The underlying principle behind CWT is 

min
S

F = ||V − AS||2 + �||S||

S̃ = AT AAT + �H
+
V = AsLORETAV
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to provide a multi-resolution representation of the time 
series by varying translation and scale parameters of a 
mother wavelet [59]. The basis functions for CWT are 
obtained by scaling and shifting the mother wavelet and 
can be mathematically expressed as:

Here, the translation is governed by parameter τ which 
shifts the mother wavelet in time while σ is the scale fac-
tor. Normalization by 1√

σ
 is done to ensure that the basis 

function always has unit energy. Once the basis function 
is defined, the CWT is computed using inner product of 
the signal with the basis function at different translations 
and scaling values. For a signal s(t), this is represented 
mathematically as,

Finally, wavelet coefficients are obtained by taking 
all shifts and scales of the Morlet mother wavelet. The 
aforementioned procedure results in a 128× 128× 6 
dimensional representation I  of the input data X. This 
is subdivided into two parts: IL and IR corresponding 

(1)�σ ,τ (t) =
1√
σ
�

(

t − τ

σ

)

(2)W�
y [σ , τ ] = s(t) ·�σ ,τ (t) =

1√
σ

∫ ∞

−∞
s(t)�∗

(

t − τ

σ

)

dt

to left and right regions, respectively, which are stored 
subsequently. It is to be noted that each IL and IR have a 
dimension of 128× 128× 3.

Classification strategy
In order to classify the images into different classes 
of neurodegenerative disorders (AD, FTD, HC in the 
BrainLat dataset and AD, MCI, HC in the IITD-AIIA 
dataset), several different approaches are adopted. In 
the first approach, two different classifier networks CL(.) 
and CR(.) , are individually trained to map IL and IR to 
a 3 dimensional vector representing the probabilistic 
distributions P(ŷL = ci|IL;�L) and P(ŷR = ci|IR;�R) . 
Here, ŷL and ŷR is the predicted class from the left and 
right classifiers, and ci = {AD, FTD/MCI ,HC} is the 
set of classes. �L and �R are the set of parameters for 
the classifiers corresponding to the left and right sets 
of images. Furthermore, a combination of posterior 
probabilities obtained from individual classifiers is also 
utilized for the classification task. The sum and prod-
uct of class probabilities from individual classifiers are 
computed, and the input X is assigned to class ŷsum 
or ŷmul based on a maximum of the computed prob-
abilities. Mathematically, the probabilities are com-
puted as P(ŷsum = ci |IL ,IR) = P(ŷL = ci |IL;�L)+ P(ŷR = ci |IR;�R) and 

Fig. 2 Grand Average EEG Source Localization plots (front view) for AD, FTD, and HC cases from the BrainLat dataset at timestamps 70s, 70.5s, 
and 71s. These plots are generated using the Brainstorm Toolbox. The activation maps were set to 20% amplitude, with the amplitude threshold 
parameter set to “Maximum: Global” for each case
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P(ŷmul = ci |IL ,IR) = P(ŷL = ci |IL;�L) ∗ P(ŷR = ci |IR;�R) for the sum and 
product cases respectively.

Additionally, two other approaches for using the 
latent representations of the two classifiers are utilized 
for the classification task. The latent outputs of the 
classifiers are fused by using two different strategies: 
Early Fusion and Tensor Fusion Network [60] to obtain 
predictions denoted by ŷef  and ŷtfn respectively. The 
two approaches have been pictorially depicted in Fig. 3. 
It is to be noted that both early fusion and tensor fusion 
networks are trained in an end-to-end manner. Several 
different standard architectures and their variants were 
utilized for the classifier block:

• Xception [44]: Utilizes depthwise separable convolu-
tions, which improve computational efficiency with-
out sacrificing accuracy.

• ResNet [45]: Introduces residual connections to com-
bat the vanishing gradient problem, enabling deeper 
networks to be trained effectively.

• InceptionResNet [46]: Combines the strength of 
Inception modules for multi-scale feature extraction 
with residual connections.

• MobileNet [47]: Focuses on lightweight architecture 
through depthwise separable convolutions, suitable 
for resource-constrained environments.

• NASNetMobile [48]: An architecture discovered 
through Neural Architecture Search, designed for 
efficient mobile deployment.

• EfficientNet [49]: Scales network depth, width, and 
resolution systematically for optimal performance.

• DenseNet [50]: Employs dense connectivity, where 
each layer is connected to every other layer, promot-
ing feature reuse and improving gradient flow.

For all the classifiers, weights are initialized from the 
pre-trained models on the ImageNet task. Subsequently, 
Adam optimizer is used to minimize the cross-entropy 
loss to learn the final model parameters.

Experiments and results
Experimental details
As elaborated in “Materials and methods”  section, the 
scout time series corresponding to the left and right 
thalamus, hippocampus and amygdala are segmented 
to form epochs of 0.25 seconds. For the BrainLat data-
set, this segmentation process yields a total of 15408, 
12048, and 21648 epochs corresponding to AD, FTD 
and HC, respectively. Similarly, for the IITD-AIIA data-
set, a total of 11088 AD, 10800 MCI and 9600 HC epochs 
are obtained. For both datasets, from the set of epochs, 
80% are randomly selected for training the deep learning 
models, while evaluation is done on the remaining 20% 
epochs. Since there is a significant class imbalance in 
both datasets, different class weights are assigned to sam-
ples belonging to different classes based on samples in 
the majority class to the number of samples in a particu-
lar class. This leads to class weights of 1.405, 1.797, and 1 
for AD, FTD and HC classes, respectively in the BrainLat 
dataset. Class weights of 1, 1.027, and 1.155 are assigned 
to AD, MCI and HC samples of the IITD-AIIA dataset. 
The model parameters are learnt by using the Adam opti-
mizer while minimizing cross-entropy loss. Furthermore, 
at the end of each training step, the validation accuracy 
is monitored on a set of randomly selected 20% samples 
from the training set. The training process is stopped if 
the validation accuracy does not improve over a set of 20 
continuous training steps.

Fig. 3 Depiction of the Early Fusion and Tensor Fusion Network approaches. zL and zR represent latent embeddings from the left and right 
classifiers, respectively
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Results and discussion
The performance of the different model architectures 
and different approaches utilized for the task of demen-
tia classification are presented in Tables 2 and 3 for the 
BrainLat and IITD-AIIA data, respectively. The results 
of the individual classifiers (for left and right regions), 
fusion using sum and product of posterior probabilities 
and the latent embedding fusion approaches (using early 
and tensor fusion) are presented. Among the different 
approaches, using the product of posterior probabili-
ties consistently yields the best classification accuracy 
for most of the model architectures (12 out of 14 for 
both datasets). The DenseNet201 emerges as the best-
performing model architecture, yielding accuracies of 
94.17% and 77.72% in conjunction with the product of 
the probabilities approach on the two datasets. The supe-
rior performance of DenseNet201 can be attributed to 
several key architectural features. The dense connectiv-
ity of DenseNet201, which connects each layer to every 
other layer in a feed-forward fashion, ensures that fea-
tures learned in earlier layers are reused throughout the 
network. This improves gradient flow and mitigates the 
vanishing gradient problem, enabling the model to learn 
more diverse and complex features critical for identify-
ing subtle patterns in EEG-derived images. Despite its 
depth, DenseNet201 is parameter-efficient, with fewer 
parameters than models like ResNet, reducing the risk 
of overfitting, particularly with relatively small data-
sets. Additionally, its ability to learn hierarchical fea-
tures across scales-from low-level patterns to high-level 
abstractions-proves essential in distinguishing neurode-
generative conditions by capturing subtle differences in 
the activation patterns of subcortical regions.

It may be observed that the classification accuracy on 
the IITD-AIIA dataset is low compared to the BrainLat 
dataset. This may be attributed to two main factors. First, 
the number of samples used for training the model is 
considerably lower in the case of the IITD-AIIA dataset. 

In order to learn the complex dynamics from image data, 
a large number of samples is required, which impacts 
the overall efficacy of the model. Second, the subcorti-
cal source localization in this dataset is done based on a 
lower number of EEG sensors (64 sensors). A lower num-
ber of EEG sensors leads to less accurate localization [54] 
of the subcortical sources, and hence, the consequent 
image representations lead to a comparatively lower 
accuracy score. Nevertheless, an accuracy of 77.72% can 
be considered a reasonably good performance of the 
model architecture.

The classification accuracies achieved using IITD-AIIA 
and BrainLat datasets emphasize the critical role of sub-
cortical regions in the progression and classification of 
neurodegenerative disorders. Subcortical structures such 
as the hippocampus, amygdala, and thalamus play a piv-
otal role in maintaining cognitive functions, including 
memory, executive functioning, attention, and emotional 
regulation. Neurodegenerative conditions like AD [19], 
FTD [21], and MCI [20] are associated with neuronal loss 
and structural degeneration in these regions, leading to 
disrupted cognitive functions [1] and altered activation 
patterns. The pronounced sensitivity of the model to sub-
cortical dynamics, particularly in the right hemisphere, 
aligns with prior findings of lateralized degeneration. This 
may be attributed to the fact that the right hippocampus 
often exhibits greater atrophy in FTD (e.g., 21% vs. 16% 
tissue loss in FTD) compared to the left hemisphere [38, 
41]. This asymmetry in degeneration disrupts neural net-
works and produces distinct patterns of activation that 
are effectively leveraged by the model for classification. 
These findings are consistent with existing literature, 
which highlights the vulnerability of the right hemisphere 
in FTD and AD neurodegenerative diseases [19, 20]. The 
ability of DenseNet201 to leverage subcortical dynamics, 
combined with its hierarchical feature-learning capabili-
ties, contributes to the accurate classification of neuro-
degenerative disorders. This integration underscores the 

Table 2 Recognition accuracies using different classifiers utilizing different classification strategies for the BrainLat dataset. The results 
for the best classification strategy for each model are depicted in blue, and the best result overall is in bold
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significance of subcortical regions and the importance of 
advanced architectures in dementia classification.

In Fig. 4, the confusion matrices for the three class clas-
sification tasks on both datasets are presented by using 
the best-performing model. It may be noted that for the 
BrainLat dataset, the model is particularly adept at recog-
nizing the Healthy cases of the three classes. The majority 
of confusion in model predictions comes from the classi-
fication of FTD and AD classes. For the IITD-AIIA data-
set, the classification accuracies of the individual classes 
are almost similar to each other. In order to better under-
stand the classification heuristics, a scatter plot obtained 

by applying t-SNE [61] for dimensionality reduction on 
the latent embedding vectors is presented in Fig.  5 for 
both datasets. From the scatter plot, it may be observed 
that for the BrainLat dataset, the clusters correspond-
ing to AD and FTD (depicted by A and F, respectively) 
have a significant overlap between them. This is particu-
larly different from the Healthy cases (depicted by H) for 
which the cluster is significantly different from the other 
two classes. Subsequently, for the IITD-AIIA dataset, 
there is a significant overlap between all three clusters 
(AD, MCI and HC). Therefore, the misclassification trend 
observed in the confusion matrix is supported by the 

Fig. 4 Confusion matrix using a combination of DenseNet201 and ŷmul for a BrainLat dataset and b IITD-AIIA dataset

Fig. 5 Scatter plot depicting clusters corresponding to each of the classes obtained by applying dimensionality reduction using t-SNE on the latent 
embedding vector for a BrainLat dataset and b IITD-AIIA dataset
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clusters corresponding to the three classes as presented 
in Fig. 5. In Fig. 6, the Receiver Operator Characteristics 
(ROC) and Precision-Recall Curves are depicted for the 
BrainLat and IITD-AIIA datasets, respectively. The aver-
age curves, along with class-wise curves, are depicted in 
the figures. Average area under ROC values of 0.99 and 
0.92 are obtained for the two datasets. Additionally, the 
average precision value for the two datasets is 0.99 and 
0.86. The observations from the curves complement the 
confusion matrices and the conclusions drawn from the 
scatter plots.

To evaluate the effectiveness of the continuous wavelet 
transform (CWT) compared to the short-time Fourier 
transform (STFT), we performed a classification analy-
sis using the DenseNet201 architecture. For the Prod-
uct of Probabilities fusion approach, CWT achieved an 
accuracy of 94.17%, significantly outperforming STFT, 
which achieved 91.71%. This may be attributed to the 
dynamic resolution of CWT which enables it to provide 
a more comprehensive analysis of transient and localized 
spectral variations [59], that are critical for distinguish-
ing neurodegenerative conditions. Unlike STFT, which 
relies on a fixed time-frequency resolution determined by 
the window size, CWT adapts its resolution dynamically 

[62]. This adaptability allows CWT to effectively repre-
sent high-frequency, short-duration components and 
low-frequency, long-duration components within the 
same framework. These capabilities make CWT particu-
larly suitable for capturing the nuanced and complex pat-
terns in subcortical EEG data, where transient dynamics 
are pivotal in classification tasks.

Conclusions
In this work, a dementia classification framework using 
time-series signals from deep brain regions, specifically 
the hippocampus, amygdala, and thalamus, is presented. 
EEG source localization using sLORETA was leveraged 
to transform the average scout time series signals into 
image representations using CWT. The images were fed 
to standard model architectures from the image domain 
to learn the complex attributes present in the data for 
reliable dementia classification. The efficacy of the pro-
posed framework was validated on two high-density 
EEG datasets. An online BrainLat dataset that includes 
subjects with AD, FTD, and HC, and an in-house col-
lected IITD-AIIA dataset that comprises of subjects 
with MCI, AD, and HC, were used for the experiments. 
Various deep learning models, including Xception, 

Fig. 6 a, c Multi-class Receiver Operator Characteristic, and b, d Multi-class Precision-Recall Curves for the combination of DenseNet201 and ŷmul 
on the BrainLat and IITD-AIIA datasets, respectively

Table 3 Recognition accuracies using different classifiers utilizing different classification strategies for the IITD-AIIA dataset. The results 
for the best classification strategy for each model are depicted in blue, and the best result overall is in bold



Page 11 of 13Ranjan et al. BMC Medical Informatics and Decision Making          (2025) 25:113  

ResNet, InceptionResNet, MobileNet, NasNetMobile, 
EfficientNet, and DenseNet, were used for classifying 
the images into one of the three categories for both the 
datasets. Different classification strategies, including iso-
lated predictions from the left and right brain regions, 
sum and product of posterior probabilities, early fusion, 
and tensor fusion networks, were explored to yield opti-
mum classification performance. The experimental 
results demonstrate that the proposed method achieves 
high classification accuracy, with the best performance 
observed using the combination of DenseNet201 and 
the product of posterior probabilities. The proposed 
method achieves a classification accuracy of 94.17% on 
the BrainLat dataset and 77.72% on the IITD-AIIA data-
set, highlighting its effectiveness in leveraging deep brain 
regions for accurate differentiation between AD, FTD, 
and MCI. By focusing on subcortical regions, which 
are among the earliest sites of neurodegeneration, our 
approach facilitates early diagnosis, critical for timely 
treatment and management. This study also establishes 
a promising baseline for future research in dementia 
classification using image representations of subcorti-
cal EEG signals. However, the method is limited by the 
sample size of the datasets and the reliance on high-den-
sity EEG recordings, which may not be readily available 
in all clinical settings. Moreover, the datasets used are 
geographically limited, which could affect the generaliz-
ability of the results to other populations. Future work 
will focus on increasing the sample size, exploring more 
sophisticated feature extraction methods, and employing 
advanced deep learning architectures to enhance system 
performance further. We believe this methodology paves 
the way for more accurate and early diagnosis of neuro-
degenerative conditions, but additional validation across 
diverse populations is necessary to confirm its broader 
applicability.

Acknowledgements
The authors would like to thank Prof. Pradeep Kumar Prajapati, Vice Chancellor 
from Dr. Sarvepalli Radhakrishnan Rajasthan Ayurved University (DSSRAU), 
Jodhpur, and Dr. Lokesh Shekhawat, Assistant Professor from Department of 
Psychiatry, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS), and Dr. 
Ram Manohar Lohia Hospital, New Delhi, for their expert discussion and guid-
ance during the diagnosis and intervention processes. Lastly, authors extend 
special thank to Dr. G.P. Bhagat, founder of SHEOWS Guru Vishram Vridh 
Ashram, for his support in facilitating the availability of the patients.

Authors’ contributions
Conceptualization by S.R., A.T., P.Y., and L.K.; Methodology, Software, Formal 
analysis, Writing – original draft by A.T., and S.R.; Data Curation by S.R., and 
H.S.; Data acquisition by S.R., H.S., R.B., and A.K.; Clinical diagnosis by R.B. and 
P.Y.; Writing – review & editing and Supervision by L.K., P.K. and D.J. All authors 
critically reviewed the manuscript.

Funding
This work was supported in part by IIT Mandi iHub and HCI Foundation India 
with project number RP04502G.

Data availability
The datasets utilized or analyzed in the present study will be accessible upon 
reasonable request from the corresponding author.

Declarations

Ethics approval and consent to participate
The study was approved by the Institutional Ethics Committee of All India 
Institute of Ayurveda, New Delhi, India (Ref No. IEC-331/27.06.2023/Rp(E)-
12/2023, dated: 17/08/2023). Informed consent was obtained from all 
participants before the trial commenced. The ethical clearance complies with 
the Helsinki Declaration.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Electrical Engineering, Indian Institute of Technology Delhi, 
New Delhi, India. 2 Centre for Biomedical Engineering, Indian Institute of Tech-
nology Delhi, New Delhi, India. 3 Department of RS and BK, All India Institute 
of Ayurveda Delhi, New Delhi, India. 4 Bharti School of Telecommunication 
and Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, 
New Delhi, India. 

Received: 23 September 2024   Accepted: 7 February 2025

References
 1. Song J, Yang H, Yan H, Lu Q, Guo L, Zheng H, et al. Structural disruption in 

subjective cognitive decline and mild cognitive impairment. Brain Imag-
ing Behav. 2024;18(6):1536-48.

 2. Maito MA, Santamaría-García H, Moguilner S, Possin KL, Godoy ME, Avila-
Funes JA, et al. Classification of Alzheimer’s disease and frontotemporal 
dementia using routine clinical and cognitive measures across multicen-
tric underrepresented samples: A cross sectional observational study. 
Lancet Reg Health–Am. 2023;17:100387.

 3. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen 
CE, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–90.

 4. Shah H, Albanese E, Duggan C, Rudan I, Langa KM, Carrillo MC, et al. 
Research priorities to reduce the global burden of dementia by 2025. 
Lancet Neurol. 2016;15(12):1285–94.

 5. Michaud TL, Su D, Siahpush M, Murman DL. The risk of incident mild 
cognitive impairment and progression to dementia considering mild 
cognitive impairment subtypes. Dement Geriatr Cogn Disord Extra. 
2017;7(1):15–29.

 6. Olney NT, Spina S, Miller BL. Frontotemporal dementia. Neurol Clin. 
2017;35(2):339–74.

 7. Musa G, Slachevsky A, Muñoz-Neira C, Méndez-Orellana C, Villagra R, 
González-Billault C, et al. Alzheimer’s disease or behavioral variant fronto-
temporal dementia? Review of key points toward an accurate clinical and 
neuropsychological diagnosis. J Alzheimers Dis. 2020;73(3):833–48.

 8. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, et al. 
CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a 
systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–84.

 9. Morris JC. The Clinical Dementia Rating (CDR) current version and scoring 
rules. Neurology. 1993;43(11):2412–2412.

 10. Lacy M, Kaemmerer T, Czipri S. Standardized mini-mental state examina-
tion scores and verbal memory performance at a memory center: impli-
cations for cognitive screening. Am J Alzheimers Dis Other Dement®. 
2015;30(2):145–52.

 11. Freitas S, Simões MR, Alves L, Santana I. Montreal cognitive assessment: 
validation study for mild cognitive impairment and Alzheimer disease. 
Alzheimer Dis Assoc Disord. 2013;27(1):37–43.



Page 12 of 13Ranjan et al. BMC Medical Informatics and Decision Making          (2025) 25:113 

 12. Bruno D, Schurmann Vignaga S. Addenbrooke’s cognitive examination III 
in the diagnosis of dementia: a critical review. Neuropsychiatr Dis Treat. 
2019;15:441–7.

 13. Vrahatis AG, Skolariki K, Krokidis MG, Lazaros K, Exarchos TP, Vlamos P. 
Revolutionizing the early detection of Alzheimer’s disease through non-
invasive biomarkers: the role of artificial intelligence and deep learning. 
Sensors. 2023;23(9):4184.

 14. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, 
et al. NIA-AA research framework: toward a biological definition of Alzhei-
mer’s disease. Alzheimers Dement. 2018;14(4):535–62.

 15. Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer’s disease: inhibi-
tion of amyloid beta and tau tangle formation. Int J Biol Macromol. 
2021;167:382–94.

 16. Goedert M, Ghetti B, Spillantini MG. Frontotemporal dementia: implica-
tions for understanding Alzheimer disease. Cold Spring Harb Perspect 
Med. 2012;2(2):a006254.

 17. Ibrahim B, Suppiah S, Ibrahim N, Mohamad M, Hassan HA, Nasser NS, 
et al. Diagnostic power of resting-state fMRI for detection of network 
connectivity in Alzheimer’s disease and mild cognitive impairment: a 
systematic review. Hum Brain Mapp. 2021;42(9):2941–68.

 18. Li J, Wei Y, Wang C, Hu Q, Liu Y, Xu L. 3-D CNN-based multichannel con-
trastive learning for Alzheimer’s disease automatic diagnosis. IEEE Trans 
Instrum Meas. 2022;71:1–11.

 19. Chaddad A, Niazi T. Radiomics analysis of subcortical brain regions related 
to Alzheimer disease. In: 2018 IEEE Life Sciences Conference (LSC). IEEE; 
2018. pp. 203–6.

 20. Kleinerova J, McKenna MC, Finnegan M, Tacheva A, Garcia-Gallardo A, 
Mohammed R, et al. Clinical, Cortical, Subcortical, and White Matter 
Features of Right Temporal Variant FTD. Brain Sci. 2024;14(8):806.

 21. Wang J, Liang X, Lu J, Zhang W, Chen Q, Li X, et al. Cortical and subcortical 
gray matter abnormalities in mild cognitive impairment. Neuroscience. 
2024;557:81–8.

 22. Sisodia PS, Ameta GK, Kumar Y, Chaplot N. A review of deep transfer 
learning approaches for class-wise prediction of Alzheimer’s disease 
using MRI images. Arch Comput Methods Eng. 2023;30(4):2409–29.

 23. Jain A, Kumar L. Subject-independent trajectory prediction using pre-
movement EEG during grasp and lift task. Biomed Signal Process Control. 
2023;86:105160.

 24. Saini M, Jain A, Muthukrishnan SP, Bhasin S, Roy S, Kumar L. BiCurNet: 
Pre-movement EEG based neural decoder for biceps curl trajectory 
estimation. IEEE Trans Instrum Meas. 2023;71:1-11.

 25. Kongwudhikunakorn S, Kiatthaveephong S, Thanontip K, Leelaarporn 
P, Piriyajitakonkij M, Charoenpattarawut T, et al. A pilot study on visually 
stimulated cognitive tasks for EEG-based dementia recognition. IEEE 
Trans Instrum Meas. 2021;70:1–10.

 26. Kim Mj, Youn YC, Paik J. Deep learning-based EEG analysis to classify nor-
mal, mild cognitive impairment, and dementia: Algorithms and dataset. 
NeuroImage. 2023;272:120054.

 27. Su R, Li X, Li Z, Han Y, Cui W, Xie P, et al. Constructing biomarker for early 
diagnosis of aMCI based on combination of multiscale fuzzy entropy 
and functional brain connectivity. Biomed Signal Process Control. 
2021;70:103000.

 28. Cammisuli DM, Isella V, Verde F, Silani V, Ticozzi N, Pomati S, et al. Behav-
ioral disorders of spatial cognition in patients with mild cognitive impair-
ment due to Alzheimer’s disease: preliminary findings from the BDSC-MCI 
project. J Clin Med. 2024;13(4):1178.

 29. Miltiadous A, Tzimourta KD, Giannakeas N, Tsipouras MG, Afrantou T, Ioan-
nidis P, et al. Alzheimer’s disease and frontotemporal dementia: A robust 
classification method of EEG signals and a comparison of validation 
methods. Diagnostics. 2021;11(8):1437.

 30. Rostamikia M, Sarbaz Y, Makouei S. EEG-based classification of Alzheimer’s 
disease and frontotemporal dementia: a comprehensive analysis of 
discriminative features. Cogn Neurodyn. 2024;18(6):3447-62.

 31. Miltiadous A, Gionanidis E, Tzimourta KD, Giannakeas N, Tzallas AT. DICE-
net: a novel convolution-transformer architecture for Alzheimer detection 
in EEG signals. IEEE Access. 2023;11:71840-58.

 32. Komolovaitė D, Maskeliūnas R, Damaševičius R. Deep convolutional 
neural network-based visual stimuli classification using electroen-
cephalography signals of healthy and alzheimer’s disease subjects. Life. 
2022;12(3):374.

 33. Nishida K, Yoshimura M, Isotani T, Yoshida T, Kitaura Y, Saito A, et al. 
Differences in quantitative EEG between frontotemporal dementia 
and Alzheimer’s disease as revealed by LORETA. Clin Neurophysiol. 
2011;122(9):1718–25.

 34. Si Y, He R, Jiang L, Yao D, Zhang H, Xu P, Ma X, Yu L, Li F. Differentiating 
between Alzheimer’s Disease and Frontotemporal Dementia Based on 
the Resting-State Multilayer EEG Network. IEEE Trans Neural Syst Rehabil 
Eng. 2023;31:4521–7.

 35. Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, et al. 
Functional cortical source connectivity of resting state electroencephalo-
graphic alpha rhythms shows similar abnormalities in patients with mild 
cognitive impairment due to Alzheimer’s and Parkinson’s diseases. Clin 
Neurophysiol. 2018;129(4):766–82.

 36. Farina FR, Emek-Savaş D, Rueda-Delgado L, Boyle R, Kiiski H, Yener G, 
et al. A comparison of resting state EEG and structural MRI for classify-
ing Alzheimer’s disease and mild cognitive impairment. Neuroimage. 
2020;215:116795.

 37. Meghdadi AH, Stevanović Karić M, McConnell M, Rupp G, Richard C, 
Hamilton J, et al. Resting state EEG biomarkers of cognitive decline 
associated with Alzheimer’s disease and mild cognitive impairment. PLoS 
ONE. 2021;16(2):e0244180.

 38. Frisoni G, Laakso M, Beltramello A, Geroldi C, Bianchetti A, Soininen H, 
et al. Hippocampal and entorhinal cortex atrophy in frontotemporal 
dementia and Alzheimer’s disease. Neurology. 1999;52(1):91–91.

 39. Shukla A, Tiwari R, Tiwari S. Analyzing subcortical structures in Alzhei-
mer’s disease using ensemble learning. Biomed Signal Process Control. 
2024;87:105407.

 40. Smith AD. Imaging the progression of Alzheimer pathology through the 
brain. Proc Natl Acad Sci. 2002;99(7):4135–7. https:// doi. org/ 10. 1073/ 
pnas. 08210 7399.

 41. Quattrini G, Pini L, Boscolo Galazzo I, Jelescu IO, Jovicich J, Manenti R, 
et al. Microstructural alterations in the locus coeruleus-entorhinal cortex 
pathway in Alzheimer’s disease and frontotemporal dementia. Alzhei-
mers Dement Diagn Assess Dis Monit. 2024;16(1):e12513.

 42. Seeber M, Cantonas LM, Hoevels M, Sesia T, Visser-Vandewalle V, Michel 
CM. Subcortical electrophysiological activity is detectable with high-
density EEG source imaging. Nat Commun. 2019;10(1):753.

 43. Tripathi A, Mondal AK, Kumar L, Prathosh A. ImAiR: Airwriting recognition 
framework using image representation of IMU signals. IEEE Sensors Lett. 
2022;6(10):1–4.

 44. Chollet F. Xception: Deep learning with depthwise separable convolu-
tions. In: Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2017. pp. 1251–1258.

 45. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 
In: Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2016. pp. 770–778.

 46. Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, inception-resnet 
and the impact of residual connections on learning. In: Proceedings of 
the AAAI conference on artificial intelligence, vol. 31. 2017.

 47. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. 
Mobilenets: Efficient convolutional neural networks for mobile vision 
applications. 2017. arXiv preprint arXiv: 1704. 04861.

 48. Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures 
for scalable image recognition. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2018. pp. 8697–8710.

 49. Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional 
neural networks. In: International conference on machine learning. PMLR; 
2019. pp. 6105–6114.

 50. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected 
convolutional networks. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2017. pp. 4700–4708.

 51. Prado P, Medel V, Gonzalez-Gomez R, Sainz-Ballesteros A, Vidal V, 
Santamaría-García H, et al. The BrainLat project, a multimodal neuroimag-
ing dataset of neurodegeneration from underrepresented backgrounds. 
Sci Data. 2023;10(1):889.

 52. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of 
single-trial EEG dynamics including independent component analysis. J 
Neurosci Methods. 2004;134(1):9–21. https:// doi. org/ 10. 1016/j. jneum eth. 
2003. 10. 009.

https://doi.org/10.1073/pnas.082107399
https://doi.org/10.1073/pnas.082107399
http://arxiv.org/abs/1704.04861
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009


Page 13 of 13Ranjan et al. BMC Medical Informatics and Decision Making          (2025) 25:113  

 53. Michel CM, Brunet D. EEG source imaging: a practical review of the analy-
sis steps. Front Neurol. 2019;10:325. https:// doi. org/ 10. 3389/ fneur. 2019. 
00325.

 54. Song J, Davey C, Poulsen C, Luu P, Turovets S, Anderson E, et al. EEG 
source localization: sensor density and head surface coverage. J Neurosci 
Methods. 2015;256:9–21.

 55. Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, et al. 
Review on solving the forward problem in EEG source analysis. J Neuro-
engineering Rehabil. 2007;4(1):1–29.

 56. Attal Y, Bhattacharjee M, Yelnik J, Cottereau B, Lefèvre J, Okada Y, et al. 
Modelling and detecting deep brain activity with MEG and EEG. Irbm. 
2009;30(3):133–8.

 57. Attal Y, Schwartz D. Assessment of subcortical source localization using 
deep brain activity imaging model with minimum norm operators: a 
MEG study. PLoS ONE. 2013;8(3):e59856.

 58. Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, et al. 
Low resolution brain electromagnetic tomography (LORETA) functional 
imaging in acute, neuroleptic-naive, first-episode, productive schizophre-
nia. Psychiatry Res Neuroimaging. 1999;90(3):169–79. https:// doi. org/ 10. 
1016/ s0925- 4927(99) 00013-x.

 59. Mallat S. A wavelet tour of signal processing. Elsevier; 1999.
 60. Zadeh A, Chen M, Poria S, Cambria E, Morency LP. Tensor fusion network 

for multimodal sentiment analysis. 2017. arXiv preprint arXiv: 1707. 07250.
 61. Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn 

Res. 2008;9(11):2579-2605.
 62. Lee T, Shair E, Abdullah A, Rahman K, Nazmi N. Comparison of Short 

Fast Fourier Transform and Continuous Wavelet Transform in Study of 
Stride Interval. J Biosensors and Bioelectronics Res. 2024;2(5):1-5. ISSN: 
2976-7466

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3389/fneur.2019.00325
https://doi.org/10.3389/fneur.2019.00325
https://doi.org/10.1016/s0925-4927(99)00013-x
https://doi.org/10.1016/s0925-4927(99)00013-x
http://arxiv.org/abs/1707.07250


© 2025. This work is licensed under
http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). 

Notwithstanding the ProQuest Terms and Conditions, you may use this
content in accordance with the terms of the License.


	Deep learning-based classification of dementia using image representation of subcortical signals
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Background & related work
	Objectives and contributions

	Materials and methods
	Dataset description
	BrainLat dataset
	IITD-AIIA dataset

	Scout time series extraction
	Forward problem
	Inverse problem

	Image data preparation
	Classification strategy

	Experiments and results
	Experimental details
	Results and discussion

	Conclusions
	Acknowledgements
	References


